These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


182 related items for PubMed ID: 26565833

  • 1. Intensity noise manipulation of a single-frequency laser with high output power by intracavity nonlinear loss.
    Lu H, Guo Y, Peng K.
    Opt Lett; 2015 Nov 15; 40(22):5196-9. PubMed ID: 26565833
    [Abstract] [Full Text] [Related]

  • 2. Scheme for improving laser stability via feedback control of intracavity nonlinear loss.
    Jin P, Lu H, Su J, Peng K.
    Appl Opt; 2016 May 01; 55(13):3478-82. PubMed ID: 27140359
    [Abstract] [Full Text] [Related]

  • 3. Intensity noise suppression of a high-power single-frequency CW laser by controlling the stimulated emission rate.
    Guo Y, Lu H, Peng W, Su J, Peng K.
    Opt Lett; 2019 Dec 15; 44(24):6033-6036. PubMed ID: 32628212
    [Abstract] [Full Text] [Related]

  • 4. Optimization of the nonlinear crystal length for high-power single-frequency intracavity frequency-doubling lasers.
    Guo Y, Su J, Lu H.
    Appl Opt; 2022 Sep 10; 61(26):7565-7570. PubMed ID: 36256354
    [Abstract] [Full Text] [Related]

  • 5. Single frequency Ti:sapphire laser with continuous frequency-tuning and low intensity noise by means of the additional intracavity nonlinear loss.
    Lu H, Sun X, Wang M, Su J, Peng K.
    Opt Express; 2014 Oct 06; 22(20):24551-8. PubMed ID: 25322030
    [Abstract] [Full Text] [Related]

  • 6. Physical conditions of single-longitudinal-mode operation for high-power all-solid-state lasers.
    Lu H, Su J, Zheng Y, Peng K.
    Opt Lett; 2014 Mar 01; 39(5):1117-20. PubMed ID: 24690685
    [Abstract] [Full Text] [Related]

  • 7. Investigation about the influence of longitudinal-mode structure of the laser on the relative intensity noise properties.
    Guo Y, Lu H, Xu M, Su J, Peng K.
    Opt Express; 2018 Aug 06; 26(16):21108-21118. PubMed ID: 30119415
    [Abstract] [Full Text] [Related]

  • 8. 2.1-watts intracavity-frequency-doubled all-solid-state light source at 671 nm for laser cooling of lithium.
    Eismann U, Bergschneider A, Sievers F, Kretzschmar N, Salomon C, Chevy F.
    Opt Express; 2013 Apr 08; 21(7):9091-102. PubMed ID: 23571998
    [Abstract] [Full Text] [Related]

  • 9. Miniature wavelength-selectable Raman laser: new insights for optimizing performance.
    Li X, Pask HM, Lee AJ, Huo Y, Piper JA, Spence DJ.
    Opt Express; 2011 Dec 05; 19(25):25623-31. PubMed ID: 22273955
    [Abstract] [Full Text] [Related]

  • 10. Observation of strong cascaded Kerr-lens dynamics in an optimally-coupled cw intracavity frequency-doubled Nd:YLF ring laser.
    Zondy JJ, Camargo FA, Zanon T, Petrov V, Wetter NU.
    Opt Express; 2010 Mar 01; 18(5):4796-815. PubMed ID: 20389493
    [Abstract] [Full Text] [Related]

  • 11. Study of relaxation oscillations in continuous-wave intracavity Raman lasers.
    Lin J, Pask HM, Lee AJ, Spence DJ.
    Opt Express; 2010 May 24; 18(11):11530-6. PubMed ID: 20589014
    [Abstract] [Full Text] [Related]

  • 12. Nonlinear acoustic fields in acoustic metamaterial based on a cylindrical pipe with periodically arranged side holes.
    Fan L, Ge H, Zhang SY, Gao HF, Liu YH, Zhang H.
    J Acoust Soc Am; 2013 Jun 24; 133(6):3846-52. PubMed ID: 23742339
    [Abstract] [Full Text] [Related]

  • 13. A new view on the temperature insensitivity of intracavity SHG configuration.
    Huang H, He J.
    Opt Express; 2012 Apr 09; 20(8):9079-89. PubMed ID: 22513619
    [Abstract] [Full Text] [Related]

  • 14. All-solid-state continuous-wave doubly resonant all-intracavity sum-frequency mixer.
    Kretschmann HM, Heine F, Huber G, Halldórsson T.
    Opt Lett; 1997 Oct 01; 22(19):1461-3. PubMed ID: 18188268
    [Abstract] [Full Text] [Related]

  • 15. A Review of the High-Power All-Solid-State Single-Frequency Continuous-Wave Laser.
    Peng W, Jin P, Li F, Su J, Lu H, Peng K.
    Micromachines (Basel); 2021 Nov 20; 12(11):. PubMed ID: 34832837
    [Abstract] [Full Text] [Related]

  • 16. High-efficiency and compact blue source: intracavity frequency tripling by using LBO and BBO without the influence of birefringence.
    Wu R.
    Appl Opt; 1993 Feb 20; 32(6):971-5. PubMed ID: 20802775
    [Abstract] [Full Text] [Related]

  • 17. Continuous-wave VECSEL Raman laser with tunable lime-yellow-orange output.
    Lin J, Pask HM, Spence DJ, Hamilton CJ, Malcolm GP.
    Opt Express; 2012 Feb 27; 20(5):5219-24. PubMed ID: 22418328
    [Abstract] [Full Text] [Related]

  • 18. Resonant second-order nonlinear optical processes in quantum cascade lasers.
    Owschimikow N, Gmachl C, Belyanin A, Kocharovsky V, Sivco DL, Colombelli R, Capasso F, Cho AY.
    Phys Rev Lett; 2003 Jan 31; 90(4):043902. PubMed ID: 12570424
    [Abstract] [Full Text] [Related]

  • 19. Influence of the pump scheme on the output power and the intensity noise of a single-frequency continuous-wave laser.
    Guo Y, Peng W, Su J, Lu H, Peng K.
    Opt Express; 2020 Feb 17; 28(4):5866-5874. PubMed ID: 32121801
    [Abstract] [Full Text] [Related]

  • 20. All-optical noise reduction of fiber laser via intracavity SOA structure.
    Ying K, Chen D, Pan Z, Zhang X, Cai H, Qu R.
    Appl Opt; 2016 Oct 10; 55(29):8185-8188. PubMed ID: 27828060
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 10.