These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Anisotropic growth of buckling-driven wrinkles in graphene monolayer. Liu X, Wang F, Wu H. Nanotechnology; 2015 Feb 13; 26(6):065701. PubMed ID: 25597449 [Abstract] [Full Text] [Related]
3. Helical edge states and edge-state transport in strained armchair graphene nanoribbons. Liu ZF, Wu QP, Chen AX, Xiao XB, Liu NH, Miao GX. Sci Rep; 2017 Aug 18; 7(1):8854. PubMed ID: 28821764 [Abstract] [Full Text] [Related]
4. Anomalous wrinkle propagation in polycrystalline graphene with tilt grain boundaries. Zhao Z, Wang Y, Wang C. Phys Chem Chem Phys; 2023 Feb 01; 25(5):3681-3694. PubMed ID: 36650982 [Abstract] [Full Text] [Related]
5. Mechanical properties and failure behavior of phosphorene with grain boundaries. Sorkin V, Zhang YW. Nanotechnology; 2017 Feb 17; 28(7):075704. PubMed ID: 28081005 [Abstract] [Full Text] [Related]
10. Seed-Initiated Anisotropic Growth of Unidirectional Armchair Graphene Nanoribbon Arrays on Germanium. Way AJ, Jacobberger RM, Arnold MS. Nano Lett; 2018 Feb 14; 18(2):898-906. PubMed ID: 29382200 [Abstract] [Full Text] [Related]
11. In-Situ Stretching Patterned Graphene Nanoribbons in the Transmission Electron Microscope. Liao Z, Medrano Sandonas L, Zhang T, Gall M, Dianat A, Gutierrez R, Mühle U, Gluch J, Jordan R, Cuniberti G, Zschech E. Sci Rep; 2017 Mar 16; 7(1):211. PubMed ID: 28303001 [Abstract] [Full Text] [Related]
13. Anomalous strength characteristics of tilt grain boundaries in graphene. Grantab R, Shenoy VB, Ruoff RS. Science; 2010 Nov 12; 330(6006):946-8. PubMed ID: 21071664 [Abstract] [Full Text] [Related]
14. On the small angle twist sub-grain boundaries in Ti3AlC2. Zhang H, Zhang C, Hu T, Zhan X, Wang X, Zhou Y. Sci Rep; 2016 Apr 01; 6():23943. PubMed ID: 27034075 [Abstract] [Full Text] [Related]
15. Exciton-dominated optical response of ultra-narrow graphene nanoribbons. Denk R, Hohage M, Zeppenfeld P, Cai J, Pignedoli CA, Söde H, Fasel R, Feng X, Müllen K, Wang S, Prezzi D, Ferretti A, Ruini A, Molinari E, Ruffieux P. Nat Commun; 2014 Jul 08; 5():4253. PubMed ID: 25001405 [Abstract] [Full Text] [Related]
16. First-principles study on the electronic properties of biphenylene, net-graphene, graphene+, and T-graphene based nanoribbons. Zhou W, Luo C, Chao Y, Xiong S, Long M, Chen T. RSC Adv; 2024 Mar 06; 14(12):8067-8074. PubMed ID: 38454942 [Abstract] [Full Text] [Related]
17. High-strength chemical-vapor-deposited graphene and grain boundaries. Lee GH, Cooper RC, An SJ, Lee S, van der Zande A, Petrone N, Hammerberg AG, Lee C, Crawford B, Oliver W, Kysar JW, Hone J. Science; 2013 May 31; 340(6136):1073-6. PubMed ID: 23723231 [Abstract] [Full Text] [Related]
19. Transport of Polarons in Graphene Nanoribbons. Ribeiro LA, da Cunha WF, Fonseca AL, e Silva GM, Stafström S. J Phys Chem Lett; 2015 Feb 05; 6(3):510-4. PubMed ID: 26261972 [Abstract] [Full Text] [Related]