These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
245 related items for PubMed ID: 26572866
1. Bioreactor performance parameters for an industrially-promising methanotroph Methylomicrobium buryatense 5GB1. Gilman A, Laurens LM, Puri AW, Chu F, Pienkos PT, Lidstrom ME. Microb Cell Fact; 2015 Nov 16; 14():182. PubMed ID: 26572866 [Abstract] [Full Text] [Related]
2. Core Metabolism Shifts during Growth on Methanol versus Methane in the Methanotroph Methylomicrobium buryatense 5GB1. Fu Y, He L, Reeve J, Beck DAC, Lidstrom ME. mBio; 2019 Apr 09; 10(2):. PubMed ID: 30967465 [Abstract] [Full Text] [Related]
3. Oxygen-limited metabolism in the methanotroph Methylomicrobium buryatense 5GB1C. Gilman A, Fu Y, Hendershott M, Chu F, Puri AW, Smith AL, Pesesky M, Lieberman R, Beck DAC, Lidstrom ME. PeerJ; 2017 Apr 09; 5():e3945. PubMed ID: 29062611 [Abstract] [Full Text] [Related]
4. The oxidative TCA cycle operates during methanotrophic growth of the Type I methanotroph Methylomicrobium buryatense 5GB1. Fu Y, Li Y, Lidstrom M. Metab Eng; 2017 Jul 09; 42():43-51. PubMed ID: 28552747 [Abstract] [Full Text] [Related]
5. A modular approach for high-flux lactic acid production from methane in an industrial medium using engineered Methylomicrobium buryatense 5GB1. Garg S, Clomburg JM, Gonzalez R. J Ind Microbiol Biotechnol; 2018 Jun 09; 45(6):379-391. PubMed ID: 29675615 [Abstract] [Full Text] [Related]
6. Enhanced biological fixation of methane for microbial lipid production by recombinant Methylomicrobium buryatense. Fei Q, Puri AW, Smith H, Dowe N, Pienkos PT. Biotechnol Biofuels; 2018 Jun 09; 11():129. PubMed ID: 29755588 [Abstract] [Full Text] [Related]
7. Bioconversion of methane to C-4 carboxylic acids using carbon flux through acetyl-CoA in engineered Methylomicrobium buryatense 5GB1C. Garg S, Wu H, Clomburg JM, Bennett GN. Metab Eng; 2018 Jul 09; 48():175-183. PubMed ID: 29883803 [Abstract] [Full Text] [Related]
8. Stimulation of cell growth by addition of tungsten in batch culture of a methanotrophic bacterium, Methylomicrobium alcaliphilum 20Z on methane and methanol. Cho S, Ha S, Kim HS, Han JH, Kim H, Yeon YJ, Na JG, Lee J. J Biotechnol; 2020 Feb 10; 309():81-84. PubMed ID: 31899249 [Abstract] [Full Text] [Related]
9. Molecular Mechanism Associated With the Impact of Methane/Oxygen Gas Supply Ratios on Cell Growth of Methylomicrobium buryatense 5GB1 Through RNA-Seq. Hu L, Yang Y, Yan X, Zhang T, Xiang J, Gao Z, Chen Y, Yang S, Fei Q. Front Bioeng Biotechnol; 2020 Feb 10; 8():263. PubMed ID: 32318556 [Abstract] [Full Text] [Related]
10. Genetic tools for the industrially promising methanotroph Methylomicrobium buryatense. Puri AW, Owen S, Chu F, Chavkin T, Beck DA, Kalyuzhnaya MG, Lidstrom ME. Appl Environ Microbiol; 2015 Mar 10; 81(5):1775-81. PubMed ID: 25548049 [Abstract] [Full Text] [Related]
11. Phosphoketolase overexpression increases biomass and lipid yield from methane in an obligate methanotrophic biocatalyst. Henard CA, Smith HK, Guarnieri MT. Metab Eng; 2017 May 10; 41():152-158. PubMed ID: 28377275 [Abstract] [Full Text] [Related]
12. Genome-scale metabolic reconstructions and theoretical investigation of methane conversion in Methylomicrobium buryatense strain 5G(B1). de la Torre A, Metivier A, Chu F, Laurens LM, Beck DA, Pienkos PT, Lidstrom ME, Kalyuzhnaya MG. Microb Cell Fact; 2015 Nov 25; 14():188. PubMed ID: 26607880 [Abstract] [Full Text] [Related]
13. [Physiological, biochemical, and cytological characteristics of a halotolerant and alkalitolerant methanotroph grown on methanol]. Eshinimaev BTs, Khmelenina VN, Sakharovskiĭ VG, Suzina NE, Trotsenko IuA. Mikrobiologiia; 2002 Nov 25; 71(5):596-603. PubMed ID: 12449624 [Abstract] [Full Text] [Related]
14. Transcriptomic and Metabolomic Responses to Carbon and Nitrogen Sources in Methylomicrobium album BG8. Sugden S, Lazic M, Sauvageau D, Stein LY. Appl Environ Microbiol; 2021 Jun 11; 87(13):e0038521. PubMed ID: 33893121 [Abstract] [Full Text] [Related]
15. Bioconversion of methane to lactate by an obligate methanotrophic bacterium. Henard CA, Smith H, Dowe N, Kalyuzhnaya MG, Pienkos PT, Guarnieri MT. Sci Rep; 2016 Feb 23; 6():21585. PubMed ID: 26902345 [Abstract] [Full Text] [Related]
17. Quantifying Methane and Methanol Metabolism of "Methylotuvimicrobium buryatense" 5GB1C under Substrate Limitation. He L, Fu Y, Lidstrom ME. mSystems; 2019 Dec 10; 4(6):. PubMed ID: 31822604 [Abstract] [Full Text] [Related]
18. Methane utilization in Methylomicrobium alcaliphilum 20ZR: a systems approach. Akberdin IR, Thompson M, Hamilton R, Desai N, Alexander D, Henard CA, Guarnieri MT, Kalyuzhnaya MG. Sci Rep; 2018 Feb 06; 8(1):2512. PubMed ID: 29410419 [Abstract] [Full Text] [Related]
19. Electroporation-Based Genetic Manipulation in Type I Methanotrophs. Yan X, Chu F, Puri AW, Fu Y, Lidstrom ME. Appl Environ Microbiol; 2016 Jan 22; 82(7):2062-2069. PubMed ID: 26801578 [Abstract] [Full Text] [Related]
20. A flexible microbial co-culture platform for simultaneous utilization of methane and carbon dioxide from gas feedstocks. Hill EA, Chrisler WB, Beliaev AS, Bernstein HC. Bioresour Technol; 2017 Mar 22; 228():250-256. PubMed ID: 28092828 [Abstract] [Full Text] [Related] Page: [Next] [New Search]