These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


192 related items for PubMed ID: 26576685

  • 1. Passivation Using Molecular Halides Increases Quantum Dot Solar Cell Performance.
    Lan X, Voznyy O, Kiani A, García de Arquer FP, Abbas AS, Kim GH, Liu M, Yang Z, Walters G, Xu J, Yuan M, Ning Z, Fan F, Kanjanaboos P, Kramer I, Zhitomirsky D, Lee P, Perelgut A, Hoogland S, Sargent EH.
    Adv Mater; 2016 Jan 13; 28(2):299-304. PubMed ID: 26576685
    [Abstract] [Full Text] [Related]

  • 2. 10.6% Certified Colloidal Quantum Dot Solar Cells via Solvent-Polarity-Engineered Halide Passivation.
    Lan X, Voznyy O, García de Arquer FP, Liu M, Xu J, Proppe AH, Walters G, Fan F, Tan H, Liu M, Yang Z, Hoogland S, Sargent EH.
    Nano Lett; 2016 Jul 13; 16(7):4630-4. PubMed ID: 27351104
    [Abstract] [Full Text] [Related]

  • 3. Charge Carrier Conduction Mechanism in PbS Quantum Dot Solar Cells: Electrochemical Impedance Spectroscopy Study.
    Wang H, Wang Y, He B, Li W, Sulaman M, Xu J, Yang S, Tang Y, Zou B.
    ACS Appl Mater Interfaces; 2016 Jul 20; 8(28):18526-33. PubMed ID: 27176547
    [Abstract] [Full Text] [Related]

  • 4. Measuring charge carrier diffusion in coupled colloidal quantum dot solids.
    Zhitomirsky D, Voznyy O, Hoogland S, Sargent EH.
    ACS Nano; 2013 Jun 25; 7(6):5282-90. PubMed ID: 23701285
    [Abstract] [Full Text] [Related]

  • 5. Merging Passivation in Synthesis Enabling the Lowest Open-Circuit Voltage Loss for PbS Quantum Dot Solar Cells.
    Liu Y, Wu H, Shi G, Li Y, Gao Y, Fang S, Tang H, Chen W, Ma T, Khan I, Wang K, Wang C, Li X, Shen Q, Liu Z, Ma W.
    Adv Mater; 2023 Feb 25; 35(5):e2207293. PubMed ID: 36380715
    [Abstract] [Full Text] [Related]

  • 6. Mixed Lead Halide Passivation of Quantum Dots.
    Fan JZ, Andersen NT, Biondi M, Todorović P, Sun B, Ouellette O, Abed J, Sagar LK, Choi MJ, Hoogland S, de Arquer FPG, Sargent EH.
    Adv Mater; 2019 Nov 25; 31(48):e1904304. PubMed ID: 31600007
    [Abstract] [Full Text] [Related]

  • 7. Reducing Interface Recombination through Mixed Nanocrystal Interlayers in PbS Quantum Dot Solar Cells.
    Pradhan S, Stavrinadis A, Gupta S, Konstantatos G.
    ACS Appl Mater Interfaces; 2017 Aug 23; 9(33):27390-27395. PubMed ID: 28787128
    [Abstract] [Full Text] [Related]

  • 8. Colloidal Quantum Dot Photovoltaics Enhanced by Perovskite Shelling.
    Yang Z, Janmohamed A, Lan X, García de Arquer FP, Voznyy O, Yassitepe E, Kim GH, Ning Z, Gong X, Comin R, Sargent EH.
    Nano Lett; 2015 Nov 11; 15(11):7539-43. PubMed ID: 26439147
    [Abstract] [Full Text] [Related]

  • 9. Role of bond adaptability in the passivation of colloidal quantum dot solids.
    Thon SM, Ip AH, Voznyy O, Levina L, Kemp KW, Carey GH, Masala S, Sargent EH.
    ACS Nano; 2013 Sep 24; 7(9):7680-8. PubMed ID: 23909748
    [Abstract] [Full Text] [Related]

  • 10. Ligand-Assisted Reconstruction of Colloidal Quantum Dots Decreases Trap State Density.
    Sun B, Vafaie M, Levina L, Wei M, Dong Y, Gao Y, Kung HT, Biondi M, Proppe AH, Chen B, Choi MJ, Sagar LK, Voznyy O, Kelley SO, Laquai F, Lu ZH, Hoogland S, García de Arquer FP, Sargent EH.
    Nano Lett; 2020 May 13; 20(5):3694-3702. PubMed ID: 32227970
    [Abstract] [Full Text] [Related]

  • 11. Charge Transport Layer Engineering toward Efficient and Stable Colloidal Quantum Dot Solar Cells.
    Zhang Y, Liu Z, Ma W.
    J Phys Chem Lett; 2023 Jul 20; 14(28):6402-6413. PubMed ID: 37431977
    [Abstract] [Full Text] [Related]

  • 12. Novel Hybrid Ligands for Passivating PbS Colloidal Quantum Dots to Enhance the Performance of Solar Cells.
    Yang Y, Zhao B, Gao Y, Liu H, Tian Y, Qin D, Wu H, Huang W, Hou L.
    Nanomicro Lett; 2015 Jul 20; 7(4):325-331. PubMed ID: 30464978
    [Abstract] [Full Text] [Related]

  • 13. Stabilizing Surface Passivation Enables Stable Operation of Colloidal Quantum Dot Photovoltaic Devices at Maximum Power Point in an Air Ambient.
    Choi J, Choi MJ, Kim J, Dinic F, Todorovic P, Sun B, Wei M, Baek SW, Hoogland S, García de Arquer FP, Voznyy O, Sargent EH.
    Adv Mater; 2020 Feb 20; 32(7):e1906497. PubMed ID: 31930771
    [Abstract] [Full Text] [Related]

  • 14. Enhanced charge carrier transport properties in colloidal quantum dot solar cells via organic and inorganic hybrid surface passivation.
    Hong J, Hou B, Lim J, Pak S, Kim BS, Cho Y, Lee J, Lee YW, Giraud P, Lee S, Park JB, Morris SM, Snaith HJ, Sohn JI, Cha S, Kim JM.
    J Mater Chem A Mater; 2016 Dec 28; 4(48):18769-18775. PubMed ID: 29308200
    [Abstract] [Full Text] [Related]

  • 15. Comparing Halide Ligands in PbS Colloidal Quantum Dots for Field-Effect Transistors and Solar Cells.
    Bederak D, Balazs DM, Sukharevska NV, Shulga AG, Abdu-Aguye M, Dirin DN, Kovalenko MV, Loi MA.
    ACS Appl Nano Mater; 2018 Dec 28; 1(12):6882-6889. PubMed ID: 30613830
    [Abstract] [Full Text] [Related]

  • 16. Phase-Transfer Exchange Lead Chalcogenide Colloidal Quantum Dots: Ink Preparation, Film Assembly, and Solar Cell Construction.
    Yuan M, Wang X, Chen X, He J, Li K, Song B, Hu H, Gao L, Lan X, Chen C, Tang J.
    Small; 2022 Jan 28; 18(2):e2102340. PubMed ID: 34561947
    [Abstract] [Full Text] [Related]

  • 17. Hybrid Surface Passivation for Retrieving Charge Collection Efficiency of Colloidal Quantum Dot Photovoltaics.
    Yang J, Oh JT, Kim M, Song H, Boukhvalov DW, Lee SH, Choi H, Yi W.
    ACS Appl Mater Interfaces; 2020 Sep 30; 12(39):43576-43585. PubMed ID: 32876435
    [Abstract] [Full Text] [Related]

  • 18. A Chemically Orthogonal Hole Transport Layer for Efficient Colloidal Quantum Dot Solar Cells.
    Biondi M, Choi MJ, Ouellette O, Baek SW, Todorović P, Sun B, Lee S, Wei M, Li P, Kirmani AR, Sagar LK, Richter LJ, Hoogland S, Lu ZH, García de Arquer FP, Sargent EH.
    Adv Mater; 2020 Apr 30; 32(17):e1906199. PubMed ID: 32196136
    [Abstract] [Full Text] [Related]

  • 19. Efficient and Stable PbS Quantum Dot Solar Cells by Triple-Cation Perovskite Passivation.
    Albaladejo-Siguan M, Becker-Koch D, Taylor AD, Sun Q, Lami V, Oppenheimer PG, Paulus F, Vaynzof Y.
    ACS Nano; 2020 Jan 28; 14(1):384-393. PubMed ID: 31721556
    [Abstract] [Full Text] [Related]

  • 20. Enhanced Passivation and Carrier Collection in Ink-Processed PbS Quantum Dot Solar Cells via a Supplementary Ligand Strategy.
    Yang X, Yang J, Ullah MI, Xia Y, Liang G, Wang S, Zhang J, Hsu HY, Song H, Tang J.
    ACS Appl Mater Interfaces; 2020 Sep 16; 12(37):42217-42225. PubMed ID: 32805951
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 10.