These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
107 related items for PubMed ID: 26578695
1. Analysis of the Fine-Tuning of Cyanobacterial Circadian Phase by Monochromatic Light and Long-Day Conditions. Kobayashi T, Obana Y, Kuboi N, Kitayama Y, Hayashi S, Oka M, Wada N, Arita K, Shimizu T, Sato M, Kanaly RA, Kutsuna S. Plant Cell Physiol; 2016 Jan; 57(1):105-14. PubMed ID: 26578695 [Abstract] [Full Text] [Related]
2. Expression of the circadian clock-related gene pex in cyanobacteria increases in darkness and is required to delay the clock. Takai N, Ikeuchi S, Manabe K, Kutsuna S. J Biol Rhythms; 2006 Aug; 21(4):235-44. PubMed ID: 16864644 [Abstract] [Full Text] [Related]
3. CmpR is important for circadian phasing and cell growth. Tanaka H, Kitamura M, Nakano Y, Katayama M, Takahashi Y, Kondo T, Manabe K, Omata T, Kutsuna S. Plant Cell Physiol; 2012 Sep; 53(9):1561-9. PubMed ID: 22744912 [Abstract] [Full Text] [Related]
4. Structural and biochemical characterization of a cyanobacterium circadian clock-modifier protein. Arita K, Hashimoto H, Igari K, Akaboshi M, Kutsuna S, Sato M, Shimizu T. J Biol Chem; 2007 Jan 12; 282(2):1128-35. PubMed ID: 17098741 [Abstract] [Full Text] [Related]
5. Functionally important structural elements of the cyanobacterial clock-related protein Pex. Kurosawa S, Murakami R, Onai K, Morishita M, Hasegawa D, Iwase R, Uzumaki T, Hayashi F, Kitajima-Ihara T, Sakata S, Murakami M, Kouyama T, Ishiura M. Genes Cells; 2009 Jan 12; 14(1):1-16. PubMed ID: 19032344 [Abstract] [Full Text] [Related]
6. The circadian clock-related gene pex regulates a negative cis element in the kaiA promoter region. Kutsuna S, Kondo T, Ikegami H, Uzumaki T, Katayama M, Ishiura M. J Bacteriol; 2007 Nov 12; 189(21):7690-6. PubMed ID: 17704219 [Abstract] [Full Text] [Related]
7. Light Wavelength as a Contributory Factor of Environmental Fitness in the Cyanobacterial Circadian Clock. Kawamoto N, Nakanishi S, Shimakawa G. Plant Cell Physiol; 2024 May 30; 65(5):798-808. PubMed ID: 38441328 [Abstract] [Full Text] [Related]
8. Stability and lability of circadian period of gene expression in the cyanobacterium Synechococcus elongatus. Clerico EM, Cassone VM, Golden SS. Microbiology (Reading); 2009 Feb 30; 155(Pt 2):635-641. PubMed ID: 19202112 [Abstract] [Full Text] [Related]
9. The Calvin cycle in cyanobacteria is regulated by CP12 via the NAD(H)/NADP(H) ratio under light/dark conditions. Tamoi M, Miyazaki T, Fukamizo T, Shigeoka S. Plant J; 2005 May 30; 42(4):504-13. PubMed ID: 15860009 [Abstract] [Full Text] [Related]
10. Natural changes in light interact with circadian regulation at promoters to control gene expression in cyanobacteria. Piechura JR, Amarnath K, O'Shea EK. Elife; 2017 Dec 14; 6():. PubMed ID: 29239721 [Abstract] [Full Text] [Related]
11. A period-extender gene, pex, that extends the period of the circadian clock in the cyanobacterium Synechococcus sp. strain PCC 7942. Kutsuna S, Kondo T, Aoki S, Ishiura M. J Bacteriol; 1998 Apr 14; 180(8):2167-74. PubMed ID: 9555901 [Abstract] [Full Text] [Related]
12. A novel mutation in kaiC affects resetting of the cyanobacterial circadian clock. Kiyohara YB, Katayama M, Kondo T. J Bacteriol; 2005 Apr 14; 187(8):2559-64. PubMed ID: 15805501 [Abstract] [Full Text] [Related]
13. A circadian timing mechanism in the cyanobacteria. Williams SB. Adv Microb Physiol; 2007 Apr 14; 52():229-96. PubMed ID: 17027373 [Abstract] [Full Text] [Related]
14. Monitoring light/dark association dynamics of multi-protein complexes in cyanobacteria using size exclusion chromatography-based proteomics. Guerreiro AC, Penning R, Raaijmakers LM, Axman IM, Heck AJ, Altelaar AF. J Proteomics; 2016 Jun 16; 142():33-44. PubMed ID: 27142972 [Abstract] [Full Text] [Related]
15. Physical interactions among circadian clock proteins KaiA, KaiB and KaiC in cyanobacteria. Iwasaki H, Taniguchi Y, Ishiura M, Kondo T. EMBO J; 1999 Mar 01; 18(5):1137-45. PubMed ID: 10064581 [Abstract] [Full Text] [Related]
16. A mathematical model for the Kai-protein-based chemical oscillator and clock gene expression rhythms in cyanobacteria. Miyoshi F, Nakayama Y, Kaizu K, Iwasaki H, Tomita M. J Biol Rhythms; 2007 Feb 01; 22(1):69-80. PubMed ID: 17229926 [Abstract] [Full Text] [Related]
17. Redox crisis underlies conditional light-dark lethality in cyanobacterial mutants that lack the circadian regulator, RpaA. Diamond S, Rubin BE, Shultzaberger RK, Chen Y, Barber CD, Golden SS. Proc Natl Acad Sci U S A; 2017 Jan 24; 114(4):E580-E589. PubMed ID: 28074036 [Abstract] [Full Text] [Related]
18. CikA, an Input Pathway Component, Senses the Oxidized Quinone Signal to Generate Phase Delays in the Cyanobacterial Circadian Clock. Kim P, Porr B, Mori T, Kim YS, Johnson CH, Diekman CO, Kim YI. J Biol Rhythms; 2020 Jun 24; 35(3):227-234. PubMed ID: 31983264 [Abstract] [Full Text] [Related]
19. Overexpression of lalA, a paralog of labA, is capable of affecting both circadian gene expression and cell growth in the cyanobacterium Synechococcus elongatus PCC 7942. Taniguchi Y, Nishikawa T, Kondo T, Oyama T. FEBS Lett; 2012 Mar 23; 586(6):753-9. PubMed ID: 22289183 [Abstract] [Full Text] [Related]
20. Regulation of circadian clock gene expression by phosphorylation states of KaiC in cyanobacteria. Murayama Y, Oyama T, Kondo T. J Bacteriol; 2008 Mar 23; 190(5):1691-8. PubMed ID: 18165308 [Abstract] [Full Text] [Related] Page: [Next] [New Search]