These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
347 related items for PubMed ID: 26583802
1. Defining the metal binding pathways of human metallothionein 1a: balancing zinc availability and cadmium seclusion. Irvine GW, Pinter TB, Stillman MJ. Metallomics; 2016 Jan; 8(1):71-81. PubMed ID: 26583802 [Abstract] [Full Text] [Related]
2. Domain Selection in Metallothionein 1A: Affinity-Controlled Mechanisms of Zinc Binding and Cadmium Exchange. Pinter TB, Irvine GW, Stillman MJ. Biochemistry; 2015 Aug 18; 54(32):5006-16. PubMed ID: 26167879 [Abstract] [Full Text] [Related]
3. Modeling the Zn(2+) and Cd(2+) metalation mechanism in mammalian metallothionein 1a. Sutherland DE, Summers KL, Stillman MJ. Biochem Biophys Res Commun; 2012 Oct 05; 426(4):601-7. PubMed ID: 22982309 [Abstract] [Full Text] [Related]
4. Cadmium binding mechanisms of isolated domains of human MT isoform 1a: Non-cooperative terminal sites and cooperative cluster sites. Irvine GW, Stillman MJ. J Inorg Biochem; 2016 May 05; 158():115-121. PubMed ID: 27013265 [Abstract] [Full Text] [Related]
5. Unravelling the mechanistic details of metal binding to mammalian metallothioneins from stoichiometric, kinetic, and binding affinity data. Scheller JS, Irvine GW, Stillman MJ. Dalton Trans; 2018 Mar 12; 47(11):3613-3637. PubMed ID: 29431781 [Abstract] [Full Text] [Related]
6. Noncooperative metalation of metallothionein 1a and its isolated domains with zinc. Sutherland DE, Summers KL, Stillman MJ. Biochemistry; 2012 Aug 21; 51(33):6690-700. PubMed ID: 22823575 [Abstract] [Full Text] [Related]
7. Metalation kinetics of the human α-metallothionein 1a fragment is dependent on the fluxional structure of the apo-protein. Irvine GW, Duncan KE, Gullons M, Stillman MJ. Chemistry; 2015 Jan 12; 21(3):1269-79. PubMed ID: 25403957 [Abstract] [Full Text] [Related]
8. Kinetics of Zinc and Cadmium Exchanges between Metallothionein and Carbonic Anhydrase. Pinter TB, Stillman MJ. Biochemistry; 2015 Oct 13; 54(40):6284-93. PubMed ID: 26401817 [Abstract] [Full Text] [Related]
9. Metal binding of metallothionein-3 versus metallothionein-2: lower affinity and higher plasticity. Palumaa P, Tammiste I, Kruusel K, Kangur L, Jörnvall H, Sillard R. Biochim Biophys Acta; 2005 Mar 14; 1747(2):205-11. PubMed ID: 15698955 [Abstract] [Full Text] [Related]
10. Zinc binds non-cooperatively to human liver metallothionein 2a at physiological pH. Jayawardena DP, Heinemann IU, Stillman MJ. Biochem Biophys Res Commun; 2017 Nov 04; 493(1):650-653. PubMed ID: 28865957 [Abstract] [Full Text] [Related]
11. Single-domain metallothioneins: evidence of the onset of clustered metal binding domains in Zn-rhMT 1a. Summers KL, Sutherland DE, Stillman MJ. Biochemistry; 2013 Apr 09; 52(14):2461-71. PubMed ID: 23506369 [Abstract] [Full Text] [Related]
12. Putting the pieces into place: Properties of intact zinc metallothionein 1A determined from interaction of its isolated domains with carbonic anhydrase. Pinter TB, Stillman MJ. Biochem J; 2015 Nov 01; 471(3):347-56. PubMed ID: 26475450 [Abstract] [Full Text] [Related]
13. Stepwise copper(i) binding to metallothionein: a mixed cooperative and non-cooperative mechanism for all 20 copper ions. Scheller JS, Irvine GW, Wong DL, Hartwig A, Stillman MJ. Metallomics; 2017 May 24; 9(5):447-462. PubMed ID: 28466911 [Abstract] [Full Text] [Related]
14. Challenging conventional wisdom: single domain metallothioneins. Sutherland DE, Stillman MJ. Metallomics; 2014 Apr 24; 6(4):702-28. PubMed ID: 24469686 [Abstract] [Full Text] [Related]
15. Sunflower metallothionein family characterisation. Study of the Zn(II)- and Cd(II)-binding abilities of the HaMT1 and HaMT2 isoforms. Tomas M, Pagani MA, Andreo CS, Capdevila M, Atrian S, Bofill R. J Inorg Biochem; 2015 Jul 24; 148():35-48. PubMed ID: 25770010 [Abstract] [Full Text] [Related]
16. Cadmium in metallothioneins. Freisinger E, Vašák M. Met Ions Life Sci; 2013 Jul 24; 11():339-71. PubMed ID: 23430778 [Abstract] [Full Text] [Related]
17. Crosstalk of the structural and zinc buffering properties of mammalian metallothionein-2. Drozd A, Wojewska D, Peris-Díaz MD, Jakimowicz P, Krężel A. Metallomics; 2018 Apr 25; 10(4):595-613. PubMed ID: 29561927 [Abstract] [Full Text] [Related]
18. Electrospray ionization mass spectrometry of zinc, cadmium, and copper metallothioneins: evidence for metal-binding cooperativity. Gehrig PM, You C, Dallinger R, Gruber C, Brouwer M, Kägi JH, Hunziker PE. Protein Sci; 2000 Feb 25; 9(2):395-402. PubMed ID: 10716192 [Abstract] [Full Text] [Related]
19. Domain specificity in metal binding to metallothionein. A circular dichroism and magnetic circular dichroism study of cadmium and zinc binding at temperature extremes. Stillman MJ, Zelazowski AJ. J Biol Chem; 1988 May 05; 263(13):6128-33. PubMed ID: 3360778 [Abstract] [Full Text] [Related]
20. Metal binding to brain-specific metallothionein-3 studied by electrospray ionization mass spectrometry. Palumaa P, Eriste E, Kruusel K, Kangur L, Jörnvall H, Sillard R. Cell Mol Biol (Noisy-le-grand); 2003 Jul 05; 49(5):763-8. PubMed ID: 14528913 [Abstract] [Full Text] [Related] Page: [Next] [New Search]