These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
6. Insights into the mechanism of drug resistance: X-ray structure analysis of G48V/C95F tethered HIV-1 protease dimer/saquinavir complex. Prashar V, Bihani SC, Das A, Rao DR, Hosur MV. Biochem Biophys Res Commun; 2010 Jun 11; 396(4):1018-23. PubMed ID: 20471372 [Abstract] [Full Text] [Related]
7. Multidrug resistance to HIV-1 protease inhibition requires cooperative coupling between distal mutations. Ohtaka H, Schön A, Freire E. Biochemistry; 2003 Nov 25; 42(46):13659-66. PubMed ID: 14622012 [Abstract] [Full Text] [Related]
9. A Comparative Insight into Amprenavir Resistance of Mutations V32I, G48V, I50V, I54V, and I84V in HIV-1 Protease Based on Thermodynamic Integration and MM-PBSA Methods. Chen J, Wang X, Zhu T, Zhang Q, Zhang JZ. J Chem Inf Model; 2015 Sep 28; 55(9):1903-13. PubMed ID: 26317593 [Abstract] [Full Text] [Related]
10. Atomic resolution crystal structures of HIV-1 protease and mutants V82A and I84V with saquinavir. Tie Y, Kovalevsky AY, Boross P, Wang YF, Ghosh AK, Tozser J, Harrison RW, Weber IT. Proteins; 2007 Apr 01; 67(1):232-42. PubMed ID: 17243183 [Abstract] [Full Text] [Related]
11. Interaction of I50V mutant and I50L/A71V double mutant HIV-protease with inhibitor TMC114 (darunavir): molecular dynamics simulation and binding free energy studies. Meher BR, Wang Y. J Phys Chem B; 2012 Feb 16; 116(6):1884-900. PubMed ID: 22239286 [Abstract] [Full Text] [Related]
14. Structural Studies of a Rationally Selected Multi-Drug Resistant HIV-1 Protease Reveal Synergistic Effect of Distal Mutations on Flap Dynamics. Agniswamy J, Louis JM, Roche J, Harrison RW, Weber IT. PLoS One; 2016 Feb 16; 11(12):e0168616. PubMed ID: 27992544 [Abstract] [Full Text] [Related]
15. Structural and dynamical properties of different protonated states of mutant HIV-1 protease complexed with the saquinavir inhibitor studied by molecular dynamics simulations. Aruksakunwong O, Wittayanarakul K, Sompornpisut P, Sanghiran V, Parasuk V, Hannongbua S. J Mol Graph Model; 2006 Nov 16; 25(3):324-32. PubMed ID: 16504560 [Abstract] [Full Text] [Related]
16. Decomposing the energetic impact of drug resistant mutations in HIV-1 protease on binding DRV. Cai Y, Schiffer CA. J Chem Theory Comput; 2010 Apr 13; 6(4):1358-1368. PubMed ID: 20543885 [Abstract] [Full Text] [Related]
17. Some insights into mechanism for binding and drug resistance of wild type and I50V V82A and I84V mutations in HIV-1 protease with GRL-98065 inhibitor from molecular dynamic simulations. Hu GD, Zhu T, Zhang SL, Wang D, Zhang QG. Eur J Med Chem; 2010 Jan 13; 45(1):227-35. PubMed ID: 19910081 [Abstract] [Full Text] [Related]
18. Non-infectious fluorimetric assay for phenotyping of drug-resistant HIV proteinase mutants. Majerová-Uhlíková T, Dantuma NP, Lindsten K, Masucci MG, Konvalinka J. J Clin Virol; 2006 May 13; 36(1):50-9. PubMed ID: 16527535 [Abstract] [Full Text] [Related]
19. Comparison of DNA sequencing and a line probe assay for detection of human immunodeficiency virus type 1 drug resistance mutations in patients failing highly active antiretroviral therapy. Servais J, Lambert C, Fontaine E, Plesséria JM, Robert I, Arendt V, Staub T, Schneider F, Hemmer R, Burtonboy G, Schmit JC. J Clin Microbiol; 2001 Feb 13; 39(2):454-9. PubMed ID: 11158089 [Abstract] [Full Text] [Related]
20. Rapid and accurate prediction of binding free energies for saquinavir-bound HIV-1 proteases. Stoica I, Sadiq SK, Coveney PV. J Am Chem Soc; 2008 Feb 27; 130(8):2639-48. PubMed ID: 18225901 [Abstract] [Full Text] [Related] Page: [Next] [New Search]