These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
402 related items for PubMed ID: 26599590
1. Laboratory simulation system, using Carcinus maenas as the model organism, for assessing the impact of CO2 leakage from sub-seabed injection and storage. Rodríguez-Romero A, Jiménez-Tenorio N, Riba I, Blasco J. Environ Res; 2016 Jan; 144(Pt A):117-129. PubMed ID: 26599590 [Abstract] [Full Text] [Related]
2. Simulation of CO₂ leakages during injection and storage in sub-seabed geological formations: metal mobilization and biota effects. Rodríguez-Romero A, Basallote MD, De Orte MR, DelValls TÁ, Riba I, Blasco J. Environ Int; 2014 Jul; 68():105-17. PubMed ID: 24721118 [Abstract] [Full Text] [Related]
3. Accumulation and histopathological damage in the clam Ruditapes philippinarum and the crab Carcinus maenas to assess sediment toxicity in Spanish ports. Martín-Díaz ML, Jiménez-Tenorio N, Sales D, Delvalls TA. Chemosphere; 2008 May; 71(10):1916-27. PubMed ID: 18313100 [Abstract] [Full Text] [Related]
4. Predicting the impacts of CO2 leakage from subseabed storage: effects of metal accumulation and toxicity on the model benthic organism Ruditapes philippinarum. Rodríguez-Romero A, Jiménez-Tenorio N, Basallote MD, De Orte MR, Blasco J, Riba I. Environ Sci Technol; 2014 Oct 21; 48(20):12292-301. PubMed ID: 25221911 [Abstract] [Full Text] [Related]
5. Effects on the mobility of metals from acidification caused by possible CO₂ leakage from sub-seabed geological formations. de Orte MR, Sarmiento AM, Basallote MD, Rodríguez-Romero A, Riba I, Delvalls A. Sci Total Environ; 2014 Feb 01; 470-471():356-63. PubMed ID: 24144940 [Abstract] [Full Text] [Related]
6. Biomarkers study for sediment quality assessment in spanish ports using the crab Carcinus maenas and the clam Ruditapes philippinarum. Martín-Díaz ML, Blasco J, Sales D, Delvalls TA. Arch Environ Contam Toxicol; 2007 Jul 01; 53(1):66-76. PubMed ID: 17502980 [Abstract] [Full Text] [Related]
7. The use of a kinetic biomarker approach for in situ monitoring of littoral sediments using the crab Carcinus maenas. Martín-Díaz ML, Blasco J, Sales D, DelValls TA. Mar Environ Res; 2009 Aug 01; 68(2):82-8. PubMed ID: 19443024 [Abstract] [Full Text] [Related]
8. Evaluation through column leaching tests of metal release from contaminated estuarine sediment subject to CO₂ leakages from Carbon Capture and Storage sites. Payán MC, Galan B, Coz A, Vandecasteele C, Viguri JR. Environ Pollut; 2012 Dec 01; 171():174-84. PubMed ID: 22926654 [Abstract] [Full Text] [Related]
9. Simulating CO2 leakage from sub-seabed storage to determine metal toxicity on marine bacteria. Díaz-García A, Borrero-Santiago AR, Ángel DelValls T, Riba I. Mar Pollut Bull; 2017 Mar 15; 116(1-2):80-86. PubMed ID: 28040253 [Abstract] [Full Text] [Related]
10. Evaluation of the threat of marine CO2 leakage-associated acidification on the toxicity of sediment metals to juvenile bivalves. Basallote MD, Rodríguez-Romero A, De Orte MR, Del Valls TÁ, Riba I. Aquat Toxicol; 2015 Sep 15; 166():63-71. PubMed ID: 26240951 [Abstract] [Full Text] [Related]
11. Influence of sediment acidification on the bioaccumulation of metals in Ruditapes philippinarum. López IR, Kalman J, Vale C, Blasco J. Environ Sci Pollut Res Int; 2010 Nov 15; 17(9):1519-28. PubMed ID: 20496008 [Abstract] [Full Text] [Related]
14. Effects of experimental CO2 leakage on solubility and transport of seven trace metals in seawater and sediment. Ardelan MV, Steinnes E, Lierhagen S, Linde SO. Sci Total Environ; 2009 Dec 01; 407(24):6255-66. PubMed ID: 19800660 [Abstract] [Full Text] [Related]
15. Occurrence of heavy metals in sediment and their bioaccumulation in sentinel crab (Macrophthalmus depressus) from highly impacted coastal zone. Saher NU, Siddiqui AS. Chemosphere; 2019 Apr 01; 221():89-98. PubMed ID: 30639816 [Abstract] [Full Text] [Related]
16. Estuarine sediment resuspension and acidification: Release behaviour of contaminants under different oxidation levels and acid sources. Martín-Torre MC, Cifrian E, Ruiz G, Galán B, Viguri JR. J Environ Manage; 2017 Sep 01; 199():211-221. PubMed ID: 28544927 [Abstract] [Full Text] [Related]
17. Relationships among total recoverable and reactive metals and metalloid in St. Lawrence River sediment: bioaccumulation by chironomids and implications for ecological risk assessment. Desrosiers M, Gagnon C, Masson S, Martel L, Babut MP. Sci Total Environ; 2008 Jan 15; 389(1):101-14. PubMed ID: 17900660 [Abstract] [Full Text] [Related]
19. CO2 leaking from sub-seabed storage: Responses of two marine bacteria strains. Borrero-Santiago AR, Carbú M, DelValls TÁ, Riba I. Mar Environ Res; 2016 Oct 15; 121():2-8. PubMed ID: 27255122 [Abstract] [Full Text] [Related]
20. Effects of CO2 enrichment on metal bioavailability and bioaccumulation using Mytilus galloprovincialis. Passarelli MC, Ray S, Cesar A, DelValls TA, Riba I. Mar Pollut Bull; 2018 Aug 15; 133():124-136. PubMed ID: 30041299 [Abstract] [Full Text] [Related] Page: [Next] [New Search]