These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
1114 related items for PubMed ID: 26604759
41. Biomimetic scaffolds containing nanofibers coated with willemite nanoparticles for improvement of stem cell osteogenesis. Ramezanifard R, Seyedjafari E, Ardeshirylajimi A, Soleimani M. Mater Sci Eng C Mater Biol Appl; 2016 May; 62():398-406. PubMed ID: 26952439 [Abstract] [Full Text] [Related]
42. Biomimetic collagen scaffolds for human bone cell growth and differentiation. Yang XB, Bhatnagar RS, Li S, Oreffo RO. Tissue Eng; 2004 May; 10(7-8):1148-59. PubMed ID: 15363171 [Abstract] [Full Text] [Related]
43. Carboxymethyl cellulose enables silk fibroin nanofibrous scaffold with enhanced biomimetic potential for bone tissue engineering application. Singh BN, Panda NN, Mund R, Pramanik K. Carbohydr Polym; 2016 Oct 20; 151():335-347. PubMed ID: 27474575 [Abstract] [Full Text] [Related]
44. Cellular activity of Wharton's Jelly-derived mesenchymal stem cells on electrospun fibrous and solvent-cast film scaffolds. Bagher Z, Ebrahimi-Barough S, Azami M, Safa M, Joghataei MT. J Biomed Mater Res A; 2016 Jan 20; 104(1):218-26. PubMed ID: 26265047 [Abstract] [Full Text] [Related]
45. Nanofiber orientation and surface functionalization modulate human mesenchymal stem cell behavior in vitro. Kolambkar YM, Bajin M, Wojtowicz A, Hutmacher DW, García AJ, Guldberg RE. Tissue Eng Part A; 2014 Jan 20; 20(1-2):398-409. PubMed ID: 24020454 [Abstract] [Full Text] [Related]
46. In vitro mineralization and bone osteogenesis in poly(ε-caprolactone)/gelatin nanofibers. Alvarez Perez MA, Guarino V, Cirillo V, Ambrosio L. J Biomed Mater Res A; 2012 Nov 20; 100(11):3008-19. PubMed ID: 22700476 [Abstract] [Full Text] [Related]
47. Peptide modified nanofibrous scaffold promotes human mesenchymal stem cell proliferation and long-term passaging. Mobasseri R, Tian L, Soleimani M, Ramakrishna S, Naderi-Manesh H. Mater Sci Eng C Mater Biol Appl; 2018 Mar 01; 84():80-89. PubMed ID: 29519446 [Abstract] [Full Text] [Related]
48. The support of bone marrow stromal cell differentiation by airbrushed nanofiber scaffolds. Tutak W, Sarkar S, Lin-Gibson S, Farooque TM, Jyotsnendu G, Wang D, Kohn J, Bolikal D, Simon CG. Biomaterials; 2013 Mar 01; 34(10):2389-98. PubMed ID: 23312903 [Abstract] [Full Text] [Related]
49. Improving in vitro biocompatibility on biomimetic mineralized collagen bone materials modified with hyaluronic acid oligosaccharide. Li M, Zhang X, Jia W, Wang Q, Liu Y, Wang X, Wang C, Jiang J, Gu G, Guo Z, Chen Z. Mater Sci Eng C Mater Biol Appl; 2019 Nov 01; 104():110008. PubMed ID: 31499961 [Abstract] [Full Text] [Related]
50. Polydopamine-assisted BMP-2-derived peptides immobilization on biomimetic copolymer scaffold for enhanced bone induction in vitro and in vivo. Pan H, Zheng Q, Guo X, Wu Y, Wu B. Colloids Surf B Biointerfaces; 2016 Jun 01; 142():1-9. PubMed ID: 26924362 [Abstract] [Full Text] [Related]
51. Controlled dual delivery of BMP-2 and dexamethasone by nanoparticle-embedded electrospun nanofibers for the efficient repair of critical-sized rat calvarial defect. Li L, Zhou G, Wang Y, Yang G, Ding S, Zhou S. Biomaterials; 2015 Jan 01; 37():218-29. PubMed ID: 25453952 [Abstract] [Full Text] [Related]
52. Aligned nanofiber material supports cell growth and increases osteogenesis in canine adipose-derived mesenchymal stem cells in vitro. Pandey S, Rathore K, Johnson J, Cekanova M. J Biomed Mater Res A; 2018 Jul 01; 106(7):1780-1788. PubMed ID: 29468805 [Abstract] [Full Text] [Related]
53. Biomimetic mineralization of carboxymethyl chitosan nanofibers with improved osteogenic activity in vitro and in vivo. Zhao X, Zhou L, Li Q, Zou Q, Du C. Carbohydr Polym; 2018 Sep 01; 195():225-234. PubMed ID: 29804972 [Abstract] [Full Text] [Related]
54. Effects of nanofibers on mesenchymal stem cells: environmental factors affecting cell adhesion and osteogenic differentiation and their mechanisms. Yu D, Wang J, Qian KJ, Yu J, Zhu HY. J Zhejiang Univ Sci B; 2018 Sep 01; 21(11):871-884. PubMed ID: 33150771 [Abstract] [Full Text] [Related]
55. Peptide-laden mesoporous silica nanoparticles with promoted bioactivity and osteo-differentiation ability for bone tissue engineering. Luo Z, Deng Y, Zhang R, Wang M, Bai Y, Zhao Q, Lyu Y, Wei J, Wei S. Colloids Surf B Biointerfaces; 2015 Jul 01; 131():73-82. PubMed ID: 25969416 [Abstract] [Full Text] [Related]
56. A comparison study between electrospun polycaprolactone and piezoelectric poly(3-hydroxybutyrate-co-3-hydroxyvalerate) scaffolds for bone tissue engineering. Gorodzha SN, Muslimov AR, Syromotina DS, Timin AS, Tcvetkov NY, Lepik KV, Petrova AV, Surmeneva MA, Gorin DA, Sukhorukov GB, Surmenev RA. Colloids Surf B Biointerfaces; 2017 Dec 01; 160():48-59. PubMed ID: 28917149 [Abstract] [Full Text] [Related]
57. Electrospinning Nanofiber-Reinforced Aerogels for the Treatment of Bone Defects. Zhang Y, Yin C, Cheng Y, Huang X, Liu K, Cheng G, Li Z. Adv Wound Care (New Rochelle); 2020 Aug 01; 9(8):441-452. PubMed ID: 32857019 [Abstract] [Full Text] [Related]
58. Human endothelial cell growth on mussel-inspired nanofiber scaffold for vascular tissue engineering. Ku SH, Park CB. Biomaterials; 2010 Dec 01; 31(36):9431-7. PubMed ID: 20880578 [Abstract] [Full Text] [Related]
59. Shish-kebab-structured poly(ε-caprolactone) nanofibers hierarchically decorated with chitosan-poly(ε-caprolactone) copolymers for bone tissue engineering. Jing X, Mi HY, Wang XC, Peng XF, Turng LS. ACS Appl Mater Interfaces; 2015 Apr 01; 7(12):6955-65. PubMed ID: 25761418 [Abstract] [Full Text] [Related]
60. Electrically conductive nanofibers with highly oriented structures and their potential application in skeletal muscle tissue engineering. Chen MC, Sun YC, Chen YH. Acta Biomater; 2013 Mar 01; 9(3):5562-72. PubMed ID: 23099301 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]