These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
230 related items for PubMed ID: 26605050
21. The burrower bug Macroscytus japonensis (Hemiptera: Cydnidae) acquires obligate symbiotic bacteria from the environment. Nakawaki T, Watanabe S, Hosokawa T. Zoological Lett; 2024 Aug 02; 10(1):15. PubMed ID: 39095847 [Abstract] [Full Text] [Related]
22. Evolutionary replacement of obligate symbionts in an ancient and diverse insect lineage. Koga R, Bennett GM, Cryan JR, Moran NA. Environ Microbiol; 2013 Jul 02; 15(7):2073-81. PubMed ID: 23574391 [Abstract] [Full Text] [Related]
23. Arsenophonus and Sodalis replacements shape evolution of symbiosis in louse flies. Šochová E, Husník F, Nováková E, Halajian A, Hypša V. PeerJ; 2017 Jul 02; 5():e4099. PubMed ID: 29250466 [Abstract] [Full Text] [Related]
24. Diverse strategies for vertical symbiont transmission among subsocial stinkbugs. Hosokawa T, Hironaka M, Inadomi K, Mukai H, Nikoh N, Fukatsu T. PLoS One; 2013 Jul 02; 8(5):e65081. PubMed ID: 23741463 [Abstract] [Full Text] [Related]
25. Strict host-symbiont cospeciation and reductive genome evolution in insect gut bacteria. Hosokawa T, Kikuchi Y, Nikoh N, Shimada M, Fukatsu T. PLoS Biol; 2006 Oct 02; 4(10):e337. PubMed ID: 17032065 [Abstract] [Full Text] [Related]
26. Phylogenetic position and peculiar genetic traits of a midgut bacterial symbiont of the stinkbug Parastrachia japonensis. Hosokawa T, Kikuchi Y, Nikoh N, Meng XY, Hironaka M, Fukatsu T. Appl Environ Microbiol; 2010 Jul 02; 76(13):4130-5. PubMed ID: 20453148 [Abstract] [Full Text] [Related]
27. Genome size determination and coding capacity of Sodalis glossinidius, an enteric symbiont of tsetse flies, as revealed by hybridization to Escherichia coli gene arrays. Akman L, Rio RV, Beard CB, Aksoy S. J Bacteriol; 2001 Aug 02; 183(15):4517-25. PubMed ID: 11443086 [Abstract] [Full Text] [Related]
28. Phylogenetic Evidence for Ancient and Persistent Environmental Symbiont Reacquisition in Largidae (Hemiptera: Heteroptera). Gordon ER, McFrederick Q, Weirauch C. Appl Environ Microbiol; 2016 Dec 15; 82(24):7123-7133. PubMed ID: 27694238 [Abstract] [Full Text] [Related]
29. Symbiotic Microorganisms and Their Different Association Types in Aquatic and Semiaquatic Bugs. Men Y, Yang ZW, Luo JY, Chen PP, Moreira FFF, Liu ZH, Yin JD, Xie BJ, Wang YH, Xie Q. Microbiol Spectr; 2022 Dec 21; 10(6):e0279422. PubMed ID: 36409137 [Abstract] [Full Text] [Related]
30. Dynamic Acquisition and Loss of Dual-Obligate Symbionts in the Plant-Sap-Feeding Adelgidae (Hemiptera: Sternorrhyncha: Aphidoidea). von Dohlen CD, Spaulding U, Patch KB, Weglarz KM, Foottit RG, Havill NP, Burke GR. Front Microbiol; 2017 Dec 21; 8():1037. PubMed ID: 28659877 [Abstract] [Full Text] [Related]
39. An Intranuclear Sodalis-Like Symbiont and Spiroplasma Coinfect the Carrot Psyllid, Bactericera trigonica (Hemiptera, Psylloidea). Ghosh S, Sela N, Kontsedalov S, Lebedev G, Haines LR, Ghanim M. Microorganisms; 2020 May 08; 8(5):. PubMed ID: 32397333 [Abstract] [Full Text] [Related]
40. A wide diversity of Pantoea lineages are engaged in mutualistic symbiosis and cospeciation processes with stinkbugs. Duron O, Noël V. Environ Microbiol Rep; 2016 Oct 08; 8(5):715-727. PubMed ID: 27362408 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]