These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
449 related items for PubMed ID: 26606506
1. Effectiveness of Emission Controls to Reduce the Atmospheric Concentrations of Mercury. Castro MS, Sherwell J. Environ Sci Technol; 2015 Dec 15; 49(24):14000-7. PubMed ID: 26606506 [Abstract] [Full Text] [Related]
2. Control strategies of atmospheric mercury emissions from coal-fired power plants in China. Tian H, Wang Y, Cheng K, Qu Y, Hao J, Xue Z, Chai F. J Air Waste Manag Assoc; 2012 May 15; 62(5):576-86. PubMed ID: 22696807 [Abstract] [Full Text] [Related]
3. Atmospheric emissions estimation of Hg, As, and Se from coal-fired power plants in China, 2007. Tian H, Wang Y, Xue Z, Qu Y, Chai F, Hao J. Sci Total Environ; 2011 Jul 15; 409(16):3078-81. PubMed ID: 21621816 [Abstract] [Full Text] [Related]
4. Behavior of mercury emissions from a commercial coal-fired power plant: the relationship between stack speciation and near-field plume measurements. Landis MS, Ryan JV, ter Schure AF, Laudal D. Environ Sci Technol; 2014 Nov 18; 48(22):13540-8. PubMed ID: 25325168 [Abstract] [Full Text] [Related]
5. Health and air quality benefits of policies to reduce coal-fired power plant emissions: a case study in North Carolina. Li YR, Gibson JM. Environ Sci Technol; 2014 Sep 02; 48(17):10019-27. PubMed ID: 25046689 [Abstract] [Full Text] [Related]
6. Ambient mercury sources in Rochester, NY: results from Principle Components Analysis (PCA) of Mercury Monitoring Network Data. Huang J, Choi HD, Hopke PK, Holsen TM. Environ Sci Technol; 2010 Nov 15; 44(22):8441-5. PubMed ID: 20977262 [Abstract] [Full Text] [Related]
7. Atmospheric emissions of F, As, Se, Hg, and Sb from coal-fired power and heat generation in China. Chen J, Liu G, Kang Y, Wu B, Sun R, Zhou C, Wu D. Chemosphere; 2013 Feb 15; 90(6):1925-32. PubMed ID: 23149189 [Abstract] [Full Text] [Related]
8. Atmospheric mercury (Hg) in the Adirondacks: concentrations and sources. Choi HD, Holsen TM, Hopke PK. Environ Sci Technol; 2008 Aug 01; 42(15):5644-53. PubMed ID: 18754488 [Abstract] [Full Text] [Related]
9. Speciation and mass-balance of mercury from pulverized coal fired power plants burning western Canadian subbituminous coals. Goodarzi F. J Environ Monit; 2004 Oct 01; 6(10):792-8. PubMed ID: 15480492 [Abstract] [Full Text] [Related]
10. Benefits of current and future policies on emissions of China's coal-fired power sector indicated by continuous emission monitoring. Zhang Y, Bo X, Zhao Y, Nielsen CP. Environ Pollut; 2019 Aug 01; 251():415-424. PubMed ID: 31103001 [Abstract] [Full Text] [Related]
11. Mobility and contamination assessment of mercury in coal fly ash, atmospheric deposition, and soil collected from Tianjin, China. Wei Z, Wu G, Su R, Li C, Liang P. Environ Toxicol Chem; 2011 Sep 01; 30(9):1997-2003. PubMed ID: 21713969 [Abstract] [Full Text] [Related]
12. Shipboard and ground measurements of atmospheric particulate mercury and total mercury in precipitation over the Yellow Sea region. Nguyen DL, Kim JY, Shim SG, Ghim YS, Zhang XS. Environ Pollut; 2016 Dec 01; 219():262-274. PubMed ID: 27814543 [Abstract] [Full Text] [Related]
13. Trend analysis from 1970 to 2008 and model evaluation of EDGARv4 global gridded anthropogenic mercury emissions. Muntean M, Janssens-Maenhout G, Song S, Selin NE, Olivier JG, Guizzardi D, Maas R, Dentener F. Sci Total Environ; 2014 Oct 01; 494-495():337-50. PubMed ID: 25068706 [Abstract] [Full Text] [Related]
14. Observed decrease in atmospheric mercury explained by global decline in anthropogenic emissions. Zhang Y, Jacob DJ, Horowitz HM, Chen L, Amos HM, Krabbenhoft DP, Slemr F, St Louis VL, Sunderland EM. Proc Natl Acad Sci U S A; 2016 Jan 19; 113(3):526-31. PubMed ID: 26729866 [Abstract] [Full Text] [Related]
15. Mercury speciation in coal-fired power plant plumes observed at three surface sites in the southeastern U.S. Edgerton ES, Hartsell BE, Jansen JJ. Environ Sci Technol; 2006 Aug 01; 40(15):4563-70. PubMed ID: 16913107 [Abstract] [Full Text] [Related]
16. Spatial and temporal variability of atmospheric mercury concentrations emitted from a coal-fired power plant in Mexico. García GF, Álvarez HB, Echeverría RS, de Alba SR, Rueda VM, Dosantos EC, Cruz GV. J Air Waste Manag Assoc; 2017 Sep 01; 67(9):973-985. PubMed ID: 28498787 [Abstract] [Full Text] [Related]
17. Effect of the shutdown of a large coal-fired power plant on ambient mercury species. Wang Y, Huang J, Hopke PK, Rattigan OV, Chalupa DC, Utell MJ, Holsen TM. Chemosphere; 2013 Jul 01; 92(4):360-7. PubMed ID: 23422172 [Abstract] [Full Text] [Related]
18. Bibliometric analysis on mercury emissions from coal-fired power plants: a systematic review and future prospect. Liu Q, Gao J, Li G, Zheng Y, Li R, Yue T. Environ Sci Pollut Res Int; 2024 Mar 01; 31(13):19148-19165. PubMed ID: 38379043 [Abstract] [Full Text] [Related]
19. Mercury speciation and emission from municipal solid waste incinerators in the Pearl River Delta, South China. Chen L, Liu M, Fan R, Ma S, Xu Z, Ren M, He Q. Sci Total Environ; 2013 Mar 01; 447():396-402. PubMed ID: 23410861 [Abstract] [Full Text] [Related]
20. Adaption and use of a quadcopter for targeted sampling of gaseous mercury in the atmosphere. Black O, Chen J, Scircle A, Zhou Y, Cizdziel JV. Environ Sci Pollut Res Int; 2018 May 01; 25(13):13195-13202. PubMed ID: 29569200 [Abstract] [Full Text] [Related] Page: [Next] [New Search]