These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
228 related items for PubMed ID: 26610248
1. A Comparison of Imputation Strategies for Ordinal Missing Data on Likert Scale Variables. Wu W, Jia F, Enders C. Multivariate Behav Res; 2015; 50(5):484-503. PubMed ID: 26610248 [Abstract] [Full Text] [Related]
2. Comparison of methods for imputing ordinal data using multivariate normal imputation: a case study of non-linear effects in a large cohort study. Lee KJ, Galati JC, Simpson JA, Carlin JB. Stat Med; 2012 Dec 30; 31(30):4164-74. PubMed ID: 22826110 [Abstract] [Full Text] [Related]
4. Multiple imputation methods for handling missing values in a longitudinal categorical variable with restrictions on transitions over time: a simulation study. De Silva AP, Moreno-Betancur M, De Livera AM, Lee KJ, Simpson JA. BMC Med Res Methodol; 2019 Jan 10; 19(1):14. PubMed ID: 30630434 [Abstract] [Full Text] [Related]
6. A Comparison of Methods for Creating Multiple Imputations of Nominal Variables. Lang KM, Wu W. Multivariate Behav Res; 2017 Jan 10; 52(3):290-304. PubMed ID: 28266876 [Abstract] [Full Text] [Related]
9. Missing data on the Center for Epidemiologic Studies Depression Scale: a comparison of 4 imputation techniques. Bono C, Ried LD, Kimberlin C, Vogel B. Res Social Adm Pharm; 2007 Mar 10; 3(1):1-27. PubMed ID: 17350555 [Abstract] [Full Text] [Related]
10. Simulation-based study comparing multiple imputation methods for non-monotone missing ordinal data in longitudinal settings. Donneau AF, Mauer M, Lambert P, Molenberghs G, Albert A. J Biopharm Stat; 2015 Mar 10; 25(3):570-601. PubMed ID: 24905056 [Abstract] [Full Text] [Related]
13. Gaussian-based routines to impute categorical variables in health surveys. Yucel RM, He Y, Zaslavsky AM. Stat Med; 2011 Dec 20; 30(29):3447-60. PubMed ID: 21976366 [Abstract] [Full Text] [Related]
14. Multiple imputation for discrete data: Evaluation of the joint latent normal model. Quartagno M, Carpenter JR. Biom J; 2019 Jul 20; 61(4):1003-1019. PubMed ID: 30868652 [Abstract] [Full Text] [Related]
16. Multiple imputation of discrete and continuous data by fully conditional specification. van Buuren S. Stat Methods Med Res; 2007 Jun 20; 16(3):219-42. PubMed ID: 17621469 [Abstract] [Full Text] [Related]
19. Passive imputation and parcel summaries are both valid to handle missing items in studies with many multi-item scales. Eekhout I, de Vet HC, de Boer MR, Twisk JW, Heymans MW. Stat Methods Med Res; 2018 Apr 20; 27(4):1128-1140. PubMed ID: 27334917 [Abstract] [Full Text] [Related]
20. Comparison of methods for imputing limited-range variables: a simulation study. Rodwell L, Lee KJ, Romaniuk H, Carlin JB. BMC Med Res Methodol; 2014 Apr 26; 14():57. PubMed ID: 24766825 [Abstract] [Full Text] [Related] Page: [Next] [New Search]