These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


131 related items for PubMed ID: 26611367

  • 1. Nanosilver and Nano Zero-Valent Iron Exposure Affects Nutrient Exchange Across the Sediment-Water Interface.
    Buchkowski RW, Williams CJ, Kelly J, Veinot JG, Xenopoulos MA.
    Bull Environ Contam Toxicol; 2016 Jan; 96(1):83-9. PubMed ID: 26611367
    [Abstract] [Full Text] [Related]

  • 2. Kinetics of Nutrient Removal by Nano Zero-Valent Iron under Different Biochemical Environments.
    Xu S, Hu Z.
    Water Environ Res; 2015 Jun; 87(6):483-90. PubMed ID: 26459816
    [Abstract] [Full Text] [Related]

  • 3. Impact of Fe and Ag nanoparticles on seed germination and differences in bioavailability during exposure in aqueous suspension and soil.
    El-Temsah YS, Joner EJ.
    Environ Toxicol; 2012 Jan; 27(1):42-9. PubMed ID: 20549639
    [Abstract] [Full Text] [Related]

  • 4. Effects of dissolved oxygen and nutrient loading on phosphorus fluxes at the sediment-water interface in the Hai River Estuary, China.
    Kang M, Peng S, Tian Y, Zhang H.
    Mar Pollut Bull; 2018 May; 130():132-139. PubMed ID: 29866539
    [Abstract] [Full Text] [Related]

  • 5. Performance of nanoscale zero-valent iron in nitrate reduction from water using a laboratory-scale continuous-flow system.
    Khalil AME, Eljamal O, Saha BB, Matsunaga N.
    Chemosphere; 2018 Apr; 197():502-512. PubMed ID: 29407812
    [Abstract] [Full Text] [Related]

  • 6. Warming increases nutrient mobilization and gaseous nitrogen removal from sediments across cascade reservoirs.
    Zhou X, Chen N, Yan Z, Duan S.
    Environ Pollut; 2016 Dec; 219():490-500. PubMed ID: 27241745
    [Abstract] [Full Text] [Related]

  • 7. Effect of natural organic matter on toxicity and reactivity of nano-scale zero-valent iron.
    Chen J, Xiu Z, Lowry GV, Alvarez PJ.
    Water Res; 2011 Feb; 45(5):1995-2001. PubMed ID: 21232782
    [Abstract] [Full Text] [Related]

  • 8. Evaluation on the Nanoscale Zero Valent Iron Based Microbial Denitrification for Nitrate Removal from Groundwater.
    Peng L, Liu Y, Gao SH, Chen X, Xin P, Dai X, Ni BJ.
    Sci Rep; 2015 Jul 22; 5():12331. PubMed ID: 26199053
    [Abstract] [Full Text] [Related]

  • 9. Environmental application and ecological significance of nano-zero valent iron.
    Yirsaw BD, Megharaj M, Chen Z, Naidu R.
    J Environ Sci (China); 2016 Jun 22; 44():88-98. PubMed ID: 27266305
    [Abstract] [Full Text] [Related]

  • 10. Influence of zero-valent iron nanoparticles on nitrate removal by Paracoccus sp.
    Liu Y, Li S, Chen Z, Megharaj M, Naidu R.
    Chemosphere; 2014 Aug 22; 108():426-32. PubMed ID: 24630453
    [Abstract] [Full Text] [Related]

  • 11. The dual effects of carboxymethyl cellulose on the colloidal stability and toxicity of nanoscale zero-valent iron.
    Dong H, Xie Y, Zeng G, Tang L, Liang J, He Q, Zhao F, Zeng Y, Wu Y.
    Chemosphere; 2016 Feb 22; 144():1682-9. PubMed ID: 26519799
    [Abstract] [Full Text] [Related]

  • 12. Simultaneous removal of cadmium and nitrate in aqueous media by nanoscale zerovalent iron (nZVI) and Au doped nZVI particles.
    Su Y, Adeleye AS, Huang Y, Sun X, Dai C, Zhou X, Zhang Y, Keller AA.
    Water Res; 2014 Oct 15; 63():102-11. PubMed ID: 24999115
    [Abstract] [Full Text] [Related]

  • 13. A review of the environmental implications of in situ remediation by nanoscale zero valent iron (nZVI): Behavior, transport and impacts on microbial communities.
    Lefevre E, Bossa N, Wiesner MR, Gunsch CK.
    Sci Total Environ; 2016 Sep 15; 565():889-901. PubMed ID: 26897610
    [Abstract] [Full Text] [Related]

  • 14. A fabrication strategy for nanosized zero valent iron (nZVI)-polymeric anion exchanger composites with tunable structure for nitrate reduction.
    Jiang Z, Zhang S, Pan B, Wang W, Wang X, Lv L, Zhang W, Zhang Q.
    J Hazard Mater; 2012 Sep 30; 233-234():1-6. PubMed ID: 22795842
    [Abstract] [Full Text] [Related]

  • 15. Enhanced nitrate-nitrogen removal by modified attapulgite-supported nanoscale zero-valent iron treating simulated groundwater.
    Dong L, Lin L, Li Q, Huang Z, Tang X, Wu M, Li C, Cao X, Scholz M.
    J Environ Manage; 2018 May 01; 213():151-158. PubMed ID: 29494931
    [Abstract] [Full Text] [Related]

  • 16. Oxidation of nanoscale zero-valent iron under sufficient and limited dissolved oxygen: Influences on aggregation behaviors.
    Jiang D, Hu X, Wang R, Yin D.
    Chemosphere; 2015 Mar 01; 122():8-13. PubMed ID: 25441925
    [Abstract] [Full Text] [Related]

  • 17. Effects of nanoscale zero-valent iron particles on biological nitrogen and phosphorus removal and microorganisms in activated sludge.
    Wu D, Shen Y, Ding A, Mahmood Q, Liu S, Tu Q.
    J Hazard Mater; 2013 Nov 15; 262():649-55. PubMed ID: 24121637
    [Abstract] [Full Text] [Related]

  • 18. Toxicity assessment of zero valent iron nanoparticles on Artemia salina.
    Kumar D, Roy R, Parashar A, Raichur AM, Chandrasekaran N, Mukherjee A, Mukherjee A.
    Environ Toxicol; 2017 May 15; 32(5):1617-1627. PubMed ID: 28101988
    [Abstract] [Full Text] [Related]

  • 19. Toxicity of zero-valent iron nanoparticles to soil organisms and the associated defense mechanisms: a review.
    Zhang S, Yi K, Chen A, Shao J, Peng L, Luo S.
    Ecotoxicology; 2022 Aug 15; 31(6):873-883. PubMed ID: 35834074
    [Abstract] [Full Text] [Related]

  • 20. DDT degradation efficiency and ecotoxicological effects of two types of nano-sized zero-valent iron (nZVI) in water and soil.
    El-Temsah YS, Sevcu A, Bobcikova K, Cernik M, Joner EJ.
    Chemosphere; 2016 Feb 15; 144():2221-8. PubMed ID: 26598990
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 7.