These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
395 related items for PubMed ID: 26616556
1. Deformability measurement of red blood cells using a microfluidic channel array and an air cavity in a driving syringe with high throughput and precise detection of subpopulations. Kang YJ, Ha YR, Lee SJ. Analyst; 2016 Jan 07; 141(1):319-30. PubMed ID: 26616556 [Abstract] [Full Text] [Related]
2. High-Throughput and Label-Free Blood-on-a-Chip for Malaria Diagnosis. Kang YJ, Ha YR, Lee SJ. Anal Chem; 2016 Mar 01; 88(5):2912-22. PubMed ID: 26845250 [Abstract] [Full Text] [Related]
3. A Disposable Blood-on-a-Chip for Simultaneous Measurement of Multiple Biophysical Properties. Kang YJ. Micromachines (Basel); 2018 Sep 20; 9(10):. PubMed ID: 30424408 [Abstract] [Full Text] [Related]
4. Deformability based sorting of red blood cells improves diagnostic sensitivity for malaria caused by Plasmodium falciparum. Guo Q, Duffy SP, Matthews K, Deng X, Santoso AT, Islamzada E, Ma H. Lab Chip; 2016 Feb 21; 16(4):645-54. PubMed ID: 26768227 [Abstract] [Full Text] [Related]
5. Simultaneous measurement of blood pressure and RBC aggregation by monitoring on-off blood flows supplied from a disposable air-compressed pump. Kang YJ. Analyst; 2019 Jun 07; 144(11):3556-3566. PubMed ID: 31050348 [Abstract] [Full Text] [Related]
6. Simultaneous measurement method of erythrocyte sedimentation rate and erythrocyte deformability in resource-limited settings. Kang YJ. Physiol Meas; 2020 Mar 06; 41(2):025009. PubMed ID: 32000147 [Abstract] [Full Text] [Related]
7. Simultaneous measurement of erythrocyte deformability and blood viscoelasticity using micropillars and co-flowing streams under pulsatile blood flows. Kang YJ. Biomicrofluidics; 2017 Jan 06; 11(1):014102. PubMed ID: 28798838 [Abstract] [Full Text] [Related]
8. Microfluidic cell-phoresis enabling high-throughput analysis of red blood cell deformability and biophysical screening of antimalarial drugs. Santoso AT, Deng X, Lee JH, Matthews K, Duffy SP, Islamzada E, McFaul SM, Myrand-Lapierre ME, Ma H. Lab Chip; 2015 Dec 07; 15(23):4451-60. PubMed ID: 26477590 [Abstract] [Full Text] [Related]
9. Internal Viscosity-Dependent Margination of Red Blood Cells in Microfluidic Channels. Ahmed F, Mehrabadi M, Liu Z, Barabino GA, Aidun CK. J Biomech Eng; 2018 Jun 01; 140(6):. PubMed ID: 29715334 [Abstract] [Full Text] [Related]
10. Microfluidic-Based Biosensor for Sequential Measurement of Blood Pressure and RBC Aggregation Over Continuously Varying Blood Flows. Kang YJ. Micromachines (Basel); 2019 Aug 30; 10(9):. PubMed ID: 31480325 [Abstract] [Full Text] [Related]
11. Microconfined flow behavior of red blood cells. Tomaiuolo G, Lanotte L, D'Apolito R, Cassinese A, Guido S. Med Eng Phys; 2016 Jan 30; 38(1):11-6. PubMed ID: 26071649 [Abstract] [Full Text] [Related]
12. A simple microfluidic device for the deformability assessment of blood cells in a continuous flow. Rodrigues RO, Pinho D, Faustino V, Lima R. Biomed Microdevices; 2015 Dec 30; 17(6):108. PubMed ID: 26482154 [Abstract] [Full Text] [Related]
13. Experimental Investigation of Air Compliance Effect on Measurement of Mechanical Properties of Blood Sample Flowing in Microfluidic Channels. Kang YJ. Micromachines (Basel); 2020 Apr 28; 11(5):. PubMed ID: 32354105 [Abstract] [Full Text] [Related]
14. Electrical measurement of red blood cell deformability on a microfluidic device. Zheng Y, Nguyen J, Wang C, Sun Y. Lab Chip; 2013 Aug 21; 13(16):3275-83. PubMed ID: 23798004 [Abstract] [Full Text] [Related]
15. Effect of erythrocyte deformability on in vivo red cell transit time and hematocrit and their correlation with in vitro filterability. Lipowsky HH, Cram LE, Justice W, Eppihimer MJ. Microvasc Res; 1993 Jul 21; 46(1):43-64. PubMed ID: 8412852 [Abstract] [Full Text] [Related]
16. High deformability of Plasmodium vivax-infected red blood cells under microfluidic conditions. Handayani S, Chiu DT, Tjitra E, Kuo JS, Lampah D, Kenangalem E, Renia L, Snounou G, Price RN, Anstey NM, Russell B. J Infect Dis; 2009 Feb 01; 199(3):445-50. PubMed ID: 19090777 [Abstract] [Full Text] [Related]
17. Development of a flow standard to enable highly reproducible measurements of deformability of stored red blood cells in a microfluidic device. Robidoux J, Laforce-Lavoie A, Charette SJ, Shevkoplyas SS, Yoshida T, Lewin A, Brouard D. Transfusion; 2020 May 01; 60(5):1032-1041. PubMed ID: 32237236 [Abstract] [Full Text] [Related]
18. Simple Assessment of Red Blood Cell Deformability Using Blood Pressure in Capillary Channels for Effective Detection of Subpopulations in Red Blood Cells. Kang YJ, Serhrouchni S, Makhro A, Bogdanova A, Lee SS. ACS Omega; 2022 Nov 01; 7(43):38576-38588. PubMed ID: 36340168 [Abstract] [Full Text] [Related]
19. Determination of erythrocyte deformability and its correlation to cellular ATP release using microbore tubing with diameters that approximate resistance vessels in vivo. Fischer DJ, Torrence NJ, Sprung RJ, Spence DM. Analyst; 2003 Sep 01; 128(9):1163-8. PubMed ID: 14529024 [Abstract] [Full Text] [Related]
20. Local Hematocrit Fluctuation Induced by Malaria-Infected Red Blood Cells and Its Effect on Microflow. Wang T, Xing Z. Biomed Res Int; 2018 Sep 01; 2018():8065252. PubMed ID: 29850568 [Abstract] [Full Text] [Related] Page: [Next] [New Search]