These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
311 related items for PubMed ID: 26616963
1. Selection of aroma compounds for the differentiation of wines obtained by fermenting musts with starter cultures of commercial yeast strains. Vararu F, Moreno-García J, Zamfir CI, Cotea VV, Moreno J. Food Chem; 2016 Apr 15; 197(Pt A):373-81. PubMed ID: 26616963 [Abstract] [Full Text] [Related]
2. Use of a flor velum yeast for modulating colour, ethanol and major aroma compound contents in red wine. Moreno J, Moreno-García J, López-Muñoz B, Mauricio JC, García-Martínez T. Food Chem; 2016 Dec 15; 213():90-97. PubMed ID: 27451159 [Abstract] [Full Text] [Related]
3. Changes in sparkling wine aroma during the second fermentation under CO2 pressure in sealed bottle. Martínez-García R, García-Martínez T, Puig-Pujol A, Mauricio JC, Moreno J. Food Chem; 2017 Dec 15; 237():1030-1040. PubMed ID: 28763947 [Abstract] [Full Text] [Related]
4. Use of a flor yeast strain for the second fermentation of sparkling wines: Effect of endogenous CO2 over-pressure on the volatilome. Martínez-García R, Roldán-Romero Y, Moreno J, Puig-Pujol A, Mauricio JC, García-Martínez T. Food Chem; 2020 Mar 05; 308():125555. PubMed ID: 31655483 [Abstract] [Full Text] [Related]
5. Evaluation of the formation of volatiles and sensory characteristics of persimmon (Diospyros kaki L.f.) fruit wines using different commercial yeast strains of Saccharomyces cerevisiae. Zhu JC, Niu YW, Feng T, Liu SJ, Cheng HX, Xu N, Yu HY, Xiao ZB. Nat Prod Res; 2014 Mar 05; 28(21):1887-93. PubMed ID: 25186058 [Abstract] [Full Text] [Related]
6. Influence of the dominance of must fermentation by Torulaspora delbrueckii on the malolactic fermentation and organoleptic quality of red table wine. Ramírez M, Velázquez R, Maqueda M, Zamora E, López-Piñeiro A, Hernández LM. Int J Food Microbiol; 2016 Dec 05; 238():311-319. PubMed ID: 27718475 [Abstract] [Full Text] [Related]
7. Adjustment of impact odorants in Hutai-8 rose wine by co-fermentation of Pichia fermentans and Saccharomyces cerevisiae. Li N, Wang L, Yin J, Ma N, Tao Y. Food Res Int; 2022 Mar 05; 153():110959. PubMed ID: 35227481 [Abstract] [Full Text] [Related]
8. Comparison of aroma-active compounds and sensory characteristics of durian (Durio zibethinus L.) wines using strains of Saccharomyces cerevisiae with odor activity values and partial least-squares regression. Zhu J, Chen F, Wang L, Niu Y, Shu C, Chen H, Xiao Z. J Agric Food Chem; 2015 Feb 25; 63(7):1939-47. PubMed ID: 25620380 [Abstract] [Full Text] [Related]
9. Using an electronic nose and volatilome analysis to differentiate sparkling wines obtained under different conditions of temperature, ageing time and yeast formats. Martínez-García R, Moreno J, Bellincontro A, Centioni L, Puig-Pujol A, Peinado RA, Mauricio JC, García-Martínez T. Food Chem; 2021 Jan 01; 334():127574. PubMed ID: 32721835 [Abstract] [Full Text] [Related]
10. Evaluation of aroma enhancement for "Ecolly" dry white wines by mixed inoculation of selected Rhodotorula mucilaginosa and Saccharomyces cerevisiae. Wang XC, Li AH, Dizy M, Ullah N, Sun WX, Tao YS. Food Chem; 2017 Aug 01; 228():550-559. PubMed ID: 28317762 [Abstract] [Full Text] [Related]
11. Chemical and sensory profiles of rosé wines from Australia. Wang J, Capone DL, Wilkinson KL, Jeffery DW. Food Chem; 2016 Apr 01; 196():682-93. PubMed ID: 26593542 [Abstract] [Full Text] [Related]
12. Proteins involved in wine aroma compounds metabolism by a Saccharomyces cerevisiae flor-velum yeast strain grown in two conditions. Moreno-García J, García-Martínez T, Millán MC, Mauricio JC, Moreno J. Food Microbiol; 2015 Oct 01; 51():1-9. PubMed ID: 26187821 [Abstract] [Full Text] [Related]
13. Fine tuning of medium chain fatty acids levels increases fruity ester production during alcoholic fermentation. Kong CL, Ma N, Yin J, Zhao HY, Tao YS. Food Chem; 2021 Jun 01; 346():128897. PubMed ID: 33406455 [Abstract] [Full Text] [Related]
14. Chemical consequences of three commercial strains of Oenococcus oeni co-inoculated with Torulaspora delbrueckii in durian wine fermentation. Lu Y, Chua JY, Huang D, Lee PR, Liu SQ. Food Chem; 2017 Jan 15; 215():209-18. PubMed ID: 27542469 [Abstract] [Full Text] [Related]
15. The Whiff of Wine Yeast Innovation: Strategies for Enhancing Aroma Production by Yeast during Wine Fermentation. van Wyk N, Grossmann M, Wendland J, von Wallbrunn C, Pretorius IS. J Agric Food Chem; 2019 Dec 11; 67(49):13496-13505. PubMed ID: 31724402 [Abstract] [Full Text] [Related]
16. Enhancing wine ester biosynthesis in mixed Hanseniaspora uvarum/Saccharomyces cerevisiae fermentation by nitrogen nutrient addition. Hu K, Jin GJ, Xu YH, Xue SJ, Qiao SJ, Teng YX, Tao YS. Food Res Int; 2019 Sep 11; 123():559-566. PubMed ID: 31285005 [Abstract] [Full Text] [Related]
17. Aroma modulation of Cabernet Gernischt dry red wine by optimal enzyme treatment strategy in winemaking. Sun WX, Hu K, Zhang JX, Zhu XL, Tao YS. Food Chem; 2018 Apr 15; 245():1248-1256. PubMed ID: 29287349 [Abstract] [Full Text] [Related]
18. Chemical profiles and aroma contribution of terpene compounds in Meili (Vitis vinifera L.) grape and wine. Yang Y, Jin GJ, Wang XJ, Kong CL, Liu J, Tao YS. Food Chem; 2019 Jun 30; 284():155-161. PubMed ID: 30744840 [Abstract] [Full Text] [Related]
19. Using Torulaspora delbrueckii killer yeasts in the elaboration of base wine and traditional sparkling wine. Velázquez R, Zamora E, Álvarez ML, Ramírez M. Int J Food Microbiol; 2019 Jan 16; 289():134-144. PubMed ID: 30240984 [Abstract] [Full Text] [Related]
20. Increased flavour diversity of Chardonnay wines by spontaneous fermentation and co-fermentation with Hanseniaspora vineae. Medina K, Boido E, Fariña L, Gioia O, Gomez ME, Barquet M, Gaggero C, Dellacassa E, Carrau F. Food Chem; 2013 Dec 01; 141(3):2513-21. PubMed ID: 23870989 [Abstract] [Full Text] [Related] Page: [Next] [New Search]