These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


168 related items for PubMed ID: 26617102

  • 1. Nonpolar Solvation Free Energies of Protein-Ligand Complexes.
    Genheden S, Kongsted J, Söderhjelm P, Ryde U.
    J Chem Theory Comput; 2010 Nov 09; 6(11):3558-68. PubMed ID: 26617102
    [Abstract] [Full Text] [Related]

  • 2. Accurate predictions of nonpolar solvation free energies require explicit consideration of binding-site hydration.
    Genheden S, Mikulskis P, Hu L, Kongsted J, Söderhjelm P, Ryde U.
    J Am Chem Soc; 2011 Aug 24; 133(33):13081-92. PubMed ID: 21728337
    [Abstract] [Full Text] [Related]

  • 3. Solvation thermodynamics of amino acid side chains on a short peptide backbone.
    Hajari T, van der Vegt NF.
    J Chem Phys; 2015 Apr 14; 142(14):144502. PubMed ID: 25877585
    [Abstract] [Full Text] [Related]

  • 4. Converging free energy estimates: MM-PB(GB)SA studies on the protein-protein complex Ras-Raf.
    Gohlke H, Case DA.
    J Comput Chem; 2004 Jan 30; 25(2):238-50. PubMed ID: 14648622
    [Abstract] [Full Text] [Related]

  • 5. Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions.
    Marenich AV, Cramer CJ, Truhlar DG.
    J Phys Chem B; 2009 May 07; 113(18):6378-96. PubMed ID: 19366259
    [Abstract] [Full Text] [Related]

  • 6. Free energy of solvation from molecular dynamics simulation applying Voronoi-Delaunay triangulation to the cavity creation.
    Goncalves PF, Stassen H.
    J Chem Phys; 2005 Dec 01; 123(21):214109. PubMed ID: 16356041
    [Abstract] [Full Text] [Related]

  • 7. Application of the frozen atom approximation to the GB/SA continuum model for solvation free energy.
    Guvench O, Weiser J, Shenkin P, Kolossváry I, Still WC.
    J Comput Chem; 2002 Jan 30; 23(2):214-21. PubMed ID: 11924735
    [Abstract] [Full Text] [Related]

  • 8. Comparison of end-point continuum-solvation methods for the calculation of protein-ligand binding free energies.
    Genheden S, Ryde U.
    Proteins; 2012 May 30; 80(5):1326-42. PubMed ID: 22274991
    [Abstract] [Full Text] [Related]

  • 9. New approach to free energy of solvation applying continuum models to molecular dynamics simulation.
    Gonçalves PF, Stassen H.
    J Comput Chem; 2002 May 30; 23(7):706-14. PubMed ID: 11948588
    [Abstract] [Full Text] [Related]

  • 10. Computations of Absolute Solvation Free Energies of Small Molecules Using Explicit and Implicit Solvent Model.
    Shivakumar D, Deng Y, Roux B.
    J Chem Theory Comput; 2009 Apr 14; 5(4):919-30. PubMed ID: 26609601
    [Abstract] [Full Text] [Related]

  • 11. FACTS: Fast analytical continuum treatment of solvation.
    Haberthür U, Caflisch A.
    J Comput Chem; 2008 Apr 15; 29(5):701-15. PubMed ID: 17918282
    [Abstract] [Full Text] [Related]

  • 12. Free energy of solvation from molecular dynamics simulations for low dielectric solvents.
    Gonçalves PF, Stassen H.
    J Comput Chem; 2003 Nov 15; 24(14):1758-65. PubMed ID: 12964194
    [Abstract] [Full Text] [Related]

  • 13. Improving the Accuracy of the Linear Interaction Energy Method for Solvation Free Energies.
    Almlöf M, Carlsson J, Åqvist J.
    J Chem Theory Comput; 2007 Nov 15; 3(6):2162-75. PubMed ID: 26636209
    [Abstract] [Full Text] [Related]

  • 14. Self-Consistent Reaction Field Model for Aqueous and Nonaqueous Solutions Based on Accurate Polarized Partial Charges.
    Marenich AV, Olson RM, Kelly CP, Cramer CJ, Truhlar DG.
    J Chem Theory Comput; 2007 Nov 15; 3(6):2011-33. PubMed ID: 26636198
    [Abstract] [Full Text] [Related]

  • 15. Comparison Study of Polar and Nonpolar Contributions to Solvation Free Energy.
    Izairi R, Kamberaj H.
    J Chem Inf Model; 2017 Oct 23; 57(10):2539-2553. PubMed ID: 28880080
    [Abstract] [Full Text] [Related]

  • 16. Development of a methodology to compute solvation free energies on the basis of the theory of energy representation for solutions represented with a polarizable force field.
    Suzuoka D, Takahashi H, Ishiyama T, Morita A.
    J Chem Phys; 2012 Dec 07; 137(21):214503. PubMed ID: 23231247
    [Abstract] [Full Text] [Related]

  • 17. On the nonpolar hydration free energy of proteins: surface area and continuum solvent models for the solute-solvent interaction energy.
    Levy RM, Zhang LY, Gallicchio E, Felts AK.
    J Am Chem Soc; 2003 Aug 06; 125(31):9523-30. PubMed ID: 12889983
    [Abstract] [Full Text] [Related]

  • 18. Effect of the Solute Cavity on the Solvation Energy and its Derivatives within the Framework of the Gaussian Charge Scheme.
    Garcia-Ratés M, Neese F.
    J Comput Chem; 2020 Apr 05; 41(9):922-939. PubMed ID: 31889331
    [Abstract] [Full Text] [Related]

  • 19. A continuum model of solvation energies including electrostatic, dispersion, and cavity contributions.
    Duignan TT, Parsons DF, Ninham BW.
    J Phys Chem B; 2013 Aug 15; 117(32):9421-9. PubMed ID: 23837915
    [Abstract] [Full Text] [Related]

  • 20. Comparative assessment of computational methods for the determination of solvation free energies in alcohol-based molecules.
    Martins SA, Sousa SF.
    J Comput Chem; 2013 Jun 05; 34(15):1354-62. PubMed ID: 23456962
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 9.