These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
158 related items for PubMed ID: 26617258
1. Conferring Phosphorogenic Properties on Iridium(III)-Based Bioorthogonal Probes through Modification with a Nitrone Unit. Lee LC, Lau JC, Liu HW, Lo KK. Angew Chem Int Ed Engl; 2016 Jan 18; 55(3):1046-9. PubMed ID: 26617258 [Abstract] [Full Text] [Related]
2. Structural Manipulation of Ruthenium(II) Polypyridine Nitrone Complexes to Generate Phosphorogenic Bioorthogonal Reagents for Selective Cellular Labeling. Tang TS, Liu HW, Lo KK. Chemistry; 2016 Jul 04; 22(28):9649-59. PubMed ID: 27273833 [Abstract] [Full Text] [Related]
3. Exploiting the Potential of Iridium(III) bis-Nitrone Complexes as Phosphorogenic Bifunctional Reagents for Phototheranostics. Mak EC, Chen Z, Lee LC, Leung PK, Yip AM, Shum J, Yiu SM, Yam VW, Lo KK. J Am Chem Soc; 2024 Sep 18; 146(37):25589-25599. PubMed ID: 39248725 [Abstract] [Full Text] [Related]
4. Modulation of emission and singlet oxygen photosensitisation in live cells utilising bioorthogonal phosphorogenic probes and protein tag technology. Leung PK, Lo KK. Chem Commun (Camb); 2020 Jun 07; 56(45):6074-6077. PubMed ID: 32352115 [Abstract] [Full Text] [Related]
5. Installing an additional emission quenching pathway in the design of iridium(III)-based phosphorogenic biomaterials for bioorthogonal labelling and imaging. Li SP, Yip AM, Liu HW, Lo KK. Biomaterials; 2016 Oct 07; 103():305-313. PubMed ID: 27429251 [Abstract] [Full Text] [Related]
6. Phosphorogenic Iridium(III) bis-Tetrazine Complexes for Bioorthogonal Peptide Stapling, Bioimaging, Photocytotoxic Applications, and the Construction of Nanosized Hydrogels. Yip AM, Lai CK, Yiu KS, Lo KK. Angew Chem Int Ed Engl; 2022 Apr 11; 61(16):e202116078. PubMed ID: 35119163 [Abstract] [Full Text] [Related]
7. Exploitation of Environment-Sensitive Luminophores in the Design of Sydnone-Based Bioorthogonal Imaging Reagents. Lee LC, Cheung HM, Liu HW, Lo KK. Chemistry; 2018 Sep 20; 24(53):14064-14068. PubMed ID: 29989299 [Abstract] [Full Text] [Related]
8. Modification of 1,2,4,5-tetrazine with cationic rhenium(I) polypyridine units to afford phosphorogenic bioorthogonal probes with enhanced reaction kinetics. Choi AW, Tso KK, Yim VM, Liu HW, Lo KK. Chem Commun (Camb); 2015 Feb 25; 51(16):3442-5. PubMed ID: 25627806 [Abstract] [Full Text] [Related]
9. Molecular Design of Bioorthogonal Probes and Imaging Reagents Derived from Photofunctional Transition Metal Complexes. Lo KK. Acc Chem Res; 2020 Jan 21; 53(1):32-44. PubMed ID: 31916746 [Abstract] [Full Text] [Related]
10. Bioorthogonal Phosphorogenic Rhenium(I) Polypyridine Sydnone Complexes for Specific Lysosome Labeling. Shum J, Zhang PZ, Lee LC, Lo KK. Chempluschem; 2020 Jul 21; 85(7):1374-1378. PubMed ID: 32207563 [Abstract] [Full Text] [Related]
11. Luminescent Rhenium(I) and Iridium(III) Polypyridine Complexes as Biological Probes, Imaging Reagents, and Photocytotoxic Agents. Lo KK. Acc Chem Res; 2015 Dec 15; 48(12):2985-95. PubMed ID: 26161527 [Abstract] [Full Text] [Related]
12. Phosphorogenic sensors for biothiols derived from cyclometalated iridium(III) polypyridine complexes containing a dinitrophenyl ether moiety. Tso KK, Liu HW, Lo KK. J Inorg Biochem; 2017 Dec 15; 177():412-422. PubMed ID: 28939002 [Abstract] [Full Text] [Related]
13. Cyclometalated iridium(III) polypyridine dibenzocyclooctyne complexes as the first phosphorescent bioorthogonal probes. Lo KK, Chan BT, Liu HW, Zhang KY, Li SP, Tang TS. Chem Commun (Camb); 2013 May 14; 49(39):4271-3. PubMed ID: 23123631 [Abstract] [Full Text] [Related]
14. The cellular uptake and localization of non-emissive iridium(III) complexes as cellular reaction-based luminescence probes. Li C, Liu Y, Wu Y, Sun Y, Li F. Biomaterials; 2013 Jan 14; 34(4):1223-34. PubMed ID: 23131533 [Abstract] [Full Text] [Related]
15. Bioorthogonal Phosphorogenic Rhenium(I) Polypyridine Sydnone Complexes for Specific Lysosome Labeling. Shum J, Zhang PZ, Lee LC, Lo KK. Chempluschem; 2020 Jul 14; 85(7):1368. PubMed ID: 32491250 [Abstract] [Full Text] [Related]
16. Cycloadditions of Trans-Cyclooctenes and Nitrones as Tools for Bioorthogonal Labelling. Margison KD, Bilodeau DA, Mahmoudi F, Pezacki JP. Chembiochem; 2020 Apr 01; 21(7):948-951. PubMed ID: 31617669 [Abstract] [Full Text] [Related]
17. Strain-promoted cycloadditions involving nitrones and alkynes--rapid tunable reactions for bioorthogonal labeling. MacKenzie DA, Sherratt AR, Chigrinova M, Cheung LL, Pezacki JP. Curr Opin Chem Biol; 2014 Aug 01; 21():81-8. PubMed ID: 25022431 [Abstract] [Full Text] [Related]
18. Imaging of a clickable anticancer iridium catalyst. Wang X, Zhu M, Gao F, Wei W, Qian Y, Liu HK, Zhao J. J Inorg Biochem; 2018 Mar 01; 180():179-185. PubMed ID: 29306719 [Abstract] [Full Text] [Related]
19. Group 9 organometallic compounds for therapeutic and bioanalytical applications. Ma DL, Chan DS, Leung CH. Acc Chem Res; 2014 Dec 16; 47(12):3614-31. PubMed ID: 25369127 [Abstract] [Full Text] [Related]
20. Strategic Design of Luminescent Rhenium(I), Ruthenium(II), and Iridium(III) Complexes as Activity-Based Probes for Bioimaging and Biosensing. Lee LC, Lo KK. Chem Asian J; 2022 Nov 16; 17(22):e202200840. PubMed ID: 36131616 [Abstract] [Full Text] [Related] Page: [Next] [New Search]