These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
621 related items for PubMed ID: 26626543
1. Development of Electrically Conductive Double-Network Hydrogels via One-Step Facile Strategy for Cardiac Tissue Engineering. Yang B, Yao F, Hao T, Fang W, Ye L, Zhang Y, Wang Y, Li J, Wang C. Adv Healthc Mater; 2016 Feb 18; 5(4):474-88. PubMed ID: 26626543 [Abstract] [Full Text] [Related]
3. Injectable Fullerenol/Alginate Hydrogel for Suppression of Oxidative Stress Damage in Brown Adipose-Derived Stem Cells and Cardiac Repair. Hao T, Li J, Yao F, Dong D, Wang Y, Yang B, Wang C. ACS Nano; 2017 Jun 27; 11(6):5474-5488. PubMed ID: 28590722 [Abstract] [Full Text] [Related]
4. Promotion of cardiac differentiation of brown adipose derived stem cells by chitosan hydrogel for repair after myocardial infarction. Wang H, Shi J, Wang Y, Yin Y, Wang L, Liu J, Liu Z, Duan C, Zhu P, Wang C. Biomaterials; 2014 Apr 27; 35(13):3986-98. PubMed ID: 24508080 [Abstract] [Full Text] [Related]
5. A conductive PEDOT/alginate porous scaffold as a platform to modulate the biological behaviors of brown adipose-derived stem cells. Yang B, Yao F, Ye L, Hao T, Zhang Y, Zhang L, Dong D, Fang W, Wang Y, Zhang X, Wang C, Li J. Biomater Sci; 2020 Jun 07; 8(11):3173-3185. PubMed ID: 32367084 [Abstract] [Full Text] [Related]
6. Moldable elastomeric polyester-carbon nanotube scaffolds for cardiac tissue engineering. Ahadian S, Davenport Huyer L, Estili M, Yee B, Smith N, Xu Z, Sun Y, Radisic M. Acta Biomater; 2017 Apr 01; 52():81-91. PubMed ID: 27940161 [Abstract] [Full Text] [Related]
7. Electrically conductive graphene/polyacrylamide hydrogels produced by mild chemical reduction for enhanced myoblast growth and differentiation. Jo H, Sim M, Kim S, Yang S, Yoo Y, Park JH, Yoon TH, Kim MG, Lee JY. Acta Biomater; 2017 Jan 15; 48():100-109. PubMed ID: 27989919 [Abstract] [Full Text] [Related]
8. Zwitterionic starch-based hydrogel for the expansion and "stemness" maintenance of brown adipose derived stem cells. Dong D, Hao T, Wang C, Zhang Y, Qin Z, Yang B, Fang W, Ye L, Yao F, Li J. Biomaterials; 2018 Mar 15; 157():149-160. PubMed ID: 29272722 [Abstract] [Full Text] [Related]
9. Mechanical properties and in vitro behavior of nanofiber-hydrogel composites for tissue engineering applications. Kai D, Prabhakaran MP, Stahl B, Eblenkamp M, Wintermantel E, Ramakrishna S. Nanotechnology; 2012 Mar 09; 23(9):095705. PubMed ID: 22322583 [Abstract] [Full Text] [Related]
10. High Modulus Conductive Hydrogels Enhance In Vitro Maturation and Contractile Function of Primary Cardiomyocytes for Uses in Drug Screening. Wu F, Gao A, Liu J, Shen Y, Xu P, Meng J, Wen T, Xu L, Xu H. Adv Healthc Mater; 2018 Dec 09; 7(24):e1800990. PubMed ID: 30565899 [Abstract] [Full Text] [Related]
12. Hybrid hydrogel-aligned carbon nanotube scaffolds to enhance cardiac differentiation of embryoid bodies. Ahadian S, Yamada S, Ramón-Azcón J, Estili M, Liang X, Nakajima K, Shiku H, Khademhosseini A, Matsue T. Acta Biomater; 2016 Feb 01; 31():134-143. PubMed ID: 26621696 [Abstract] [Full Text] [Related]
13. Biodegradable and electroconductive poly(3,4-ethylenedioxythiophene)/carboxymethyl chitosan hydrogels for neural tissue engineering. Xu C, Guan S, Wang S, Gong W, Liu T, Ma X, Sun C. Mater Sci Eng C Mater Biol Appl; 2018 Mar 01; 84():32-43. PubMed ID: 29519441 [Abstract] [Full Text] [Related]
14. Polypyrrole/Alginate Hybrid Hydrogels: Electrically Conductive and Soft Biomaterials for Human Mesenchymal Stem Cell Culture and Potential Neural Tissue Engineering Applications. Yang S, Jang L, Kim S, Yang J, Yang K, Cho SW, Lee JY. Macromol Biosci; 2016 Nov 01; 16(11):1653-1661. PubMed ID: 27455895 [Abstract] [Full Text] [Related]
15. Additive manufacturing of photo-crosslinked gelatin scaffolds for adipose tissue engineering. Tytgat L, Van Damme L, Van Hoorick J, Declercq H, Thienpont H, Ottevaere H, Blondeel P, Dubruel P, Van Vlierberghe S. Acta Biomater; 2019 Aug 01; 94():340-350. PubMed ID: 31136829 [Abstract] [Full Text] [Related]
16. Reduced Graphene Oxide-GelMA Hybrid Hydrogels as Scaffolds for Cardiac Tissue Engineering. Shin SR, Zihlmann C, Akbari M, Assawes P, Cheung L, Zhang K, Manoharan V, Zhang YS, Yüksekkaya M, Wan KT, Nikkhah M, Dokmeci MR, Tang XS, Khademhosseini A. Small; 2016 Jul 01; 12(27):3677-89. PubMed ID: 27254107 [Abstract] [Full Text] [Related]
17. Alginate/polyoxyethylene and alginate/gelatin hydrogels: preparation, characterization, and application in tissue engineering. Aroguz AZ, Baysal K, Adiguzel Z, Baysal BM. Appl Biochem Biotechnol; 2014 May 01; 173(2):433-48. PubMed ID: 24728760 [Abstract] [Full Text] [Related]
18. High-aspect-ratio water-dispersed gold nanowires incorporated within gelatin methacrylate hydrogels for constructing cardiac tissues in vitro. Li XP, Qu KY, Zhang F, Jiang HN, Zhang N, Nihad C, Liu CM, Wu KH, Wang XW, Huang NP. J Mater Chem B; 2020 Aug 19; 8(32):7213-7224. PubMed ID: 32638823 [Abstract] [Full Text] [Related]
19. An extremely tough and ionic conductive natural-polymer-based double network hydrogel. Sun X, Liang Y, Ye L, Liang H. J Mater Chem B; 2021 Sep 29; 9(37):7751-7759. PubMed ID: 34586150 [Abstract] [Full Text] [Related]
20. Biohybrid oxidized alginate/myocardial extracellular matrix injectable hydrogels with improved electromechanical properties for cardiac tissue engineering. Mousavi A, Mashayekhan S, Baheiraei N, Pourjavadi A. Int J Biol Macromol; 2021 Jun 01; 180():692-708. PubMed ID: 33753199 [Abstract] [Full Text] [Related] Page: [Next] [New Search]