These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
265 related items for PubMed ID: 26626834
1. Calculation of Standard Binding Free Energies: Aromatic Molecules in the T4 Lysozyme L99A Mutant. Deng Y, Roux B. J Chem Theory Comput; 2006 Sep; 2(5):1255-73. PubMed ID: 26626834 [Abstract] [Full Text] [Related]
2. Calculation of the standard binding free energy of sparsomycin to the ribosomal peptidyl-transferase P-site using molecular dynamics simulations with restraining potentials. Ge X, Roux B. J Mol Recognit; 2010 Sep; 23(2):128-41. PubMed ID: 20151411 [Abstract] [Full Text] [Related]
3. CHARMM-GUI Ligand Binder for absolute binding free energy calculations and its application. Jo S, Jiang W, Lee HS, Roux B, Im W. J Chem Inf Model; 2013 Jan 28; 53(1):267-77. PubMed ID: 23205773 [Abstract] [Full Text] [Related]
4. Absolute binding free energy calculations using molecular dynamics simulations with restraining potentials. Wang J, Deng Y, Roux B. Biophys J; 2006 Oct 15; 91(8):2798-814. PubMed ID: 16844742 [Abstract] [Full Text] [Related]
5. Density functional theory calculations on entire proteins for free energies of binding: application to a model polar binding site. Fox SJ, Dziedzic J, Fox T, Tautermann CS, Skylaris CK. Proteins; 2014 Dec 15; 82(12):3335-46. PubMed ID: 25212393 [Abstract] [Full Text] [Related]
6. Absolute binding free energy calculations of sparsomycin analogs to the bacterial ribosome. Ge X, Roux B. J Phys Chem B; 2010 Jul 29; 114(29):9525-39. PubMed ID: 20608691 [Abstract] [Full Text] [Related]
7. Modeling protein-small molecule interactions: structure and thermodynamics of noble gases binding in a cavity in mutant phage T4 lysozyme L99A. Mann G, Hermans J. J Mol Biol; 2000 Sep 29; 302(4):979-89. PubMed ID: 10993736 [Abstract] [Full Text] [Related]
8. Charging free energy calculations using the Generalized Solvent Boundary Potential (GSBP) and periodic boundary condition: a comparative analysis using ion solvation and oxidation free energy in proteins. Lu X, Cui Q. J Phys Chem B; 2013 Feb 21; 117(7):2005-18. PubMed ID: 23347181 [Abstract] [Full Text] [Related]
9. Analysis of the binding energies of testosterone, 5alpha-dihydrotestosterone, androstenedione and dehydroepiandrosterone sulfate with an antitestosterone antibody. Nordman N, Valjakka J, Peräkylä M. Proteins; 2003 Jan 01; 50(1):135-43. PubMed ID: 12471606 [Abstract] [Full Text] [Related]
10. Protein-ligand binding free energies from exhaustive docking. Purisima EO, Hogues H. J Phys Chem B; 2012 Jun 14; 116(23):6872-9. PubMed ID: 22432509 [Abstract] [Full Text] [Related]
11. Computation of binding free energy with molecular dynamics and grand canonical Monte Carlo simulations. Deng Y, Roux B. J Chem Phys; 2008 Mar 21; 128(11):115103. PubMed ID: 18361618 [Abstract] [Full Text] [Related]
12. Absolute and relative binding free energy calculations of the interaction of biotin and its analogs with streptavidin using molecular dynamics/free energy perturbation approaches. Miyamoto S, Kollman PA. Proteins; 1993 Jul 21; 16(3):226-45. PubMed ID: 8346190 [Abstract] [Full Text] [Related]
13. Fragment-based computation of binding free energies by systematic sampling. Clark M, Meshkat S, Talbot GT, Carnevali P, Wiseman JS. J Chem Inf Model; 2009 Aug 21; 49(8):1901-13. PubMed ID: 19610599 [Abstract] [Full Text] [Related]
14. Examining methods for calculations of binding free energies: LRA, LIE, PDLD-LRA, and PDLD/S-LRA calculations of ligands binding to an HIV protease. Sham YY, Chu ZT, Tao H, Warshel A. Proteins; 2000 Jun 01; 39(4):393-407. PubMed ID: 10813821 [Abstract] [Full Text] [Related]
15. Free energies of binding from large-scale first-principles quantum mechanical calculations: application to ligand hydration energies. Fox SJ, Pittock C, Tautermann CS, Fox T, Christ C, Malcolm NO, Essex JW, Skylaris CK. J Phys Chem B; 2013 Aug 15; 117(32):9478-85. PubMed ID: 23841453 [Abstract] [Full Text] [Related]
16. Predicting ligand binding affinity with alchemical free energy methods in a polar model binding site. Boyce SE, Mobley DL, Rocklin GJ, Graves AP, Dill KA, Shoichet BK. J Mol Biol; 2009 Dec 11; 394(4):747-63. PubMed ID: 19782087 [Abstract] [Full Text] [Related]
17. Use of stabilizing mutations to engineer a charged group within a ligand-binding hydrophobic cavity in T4 lysozyme. Liu L, Baase WA, Michael MM, Matthews BW. Biochemistry; 2009 Sep 22; 48(37):8842-51. PubMed ID: 19663503 [Abstract] [Full Text] [Related]
18. Glycogen phosphorylase inhibitors: a free energy perturbation analysis of glucopyranose spirohydantoin analogues. Archontis G, Watson KA, Xie Q, Andreou G, Chrysina ED, Zographos SE, Oikonomakos NG, Karplus M. Proteins; 2005 Dec 01; 61(4):984-98. PubMed ID: 16245298 [Abstract] [Full Text] [Related]
19. Nonpolar Solvation Free Energies of Protein-Ligand Complexes. Genheden S, Kongsted J, Söderhjelm P, Ryde U. J Chem Theory Comput; 2010 Nov 09; 6(11):3558-68. PubMed ID: 26617102 [Abstract] [Full Text] [Related]
20. Grand canonical free-energy calculations of protein-ligand binding. Clark M, Meshkat S, Wiseman JS. J Chem Inf Model; 2009 Apr 09; 49(4):934-43. PubMed ID: 19309088 [Abstract] [Full Text] [Related] Page: [Next] [New Search]