These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
1170 related items for PubMed ID: 26626941
1. Characterization of Bacterial Communities in Deep-Sea Hydrothermal Vents from Three Oceanic Regions. He T, Zhang X. Mar Biotechnol (NY); 2016 Apr; 18(2):232-41. PubMed ID: 26626941 [Abstract] [Full Text] [Related]
2. The discovery of new deep-sea hydrothermal vent communities in the southern ocean and implications for biogeography. Rogers AD, Tyler PA, Connelly DP, Copley JT, James R, Larter RD, Linse K, Mills RA, Garabato AN, Pancost RD, Pearce DA, Polunin NV, German CR, Shank T, Boersch-Supan PH, Alker BJ, Aquilina A, Bennett SA, Clarke A, Dinley RJ, Graham AG, Green DR, Hawkes JA, Hepburn L, Hilario A, Huvenne VA, Marsh L, Ramirez-Llodra E, Reid WD, Roterman CN, Sweeting CJ, Thatje S, Zwirglmaier K. PLoS Biol; 2012 Jan; 10(1):e1001234. PubMed ID: 22235194 [Abstract] [Full Text] [Related]
3. [Bacterial diversity in a deep-sea hydrothermal plume in the southwest Indian Ocean]. Ren F, Xi L, Song L, Zhu Y, Dong Z, Huang Y, Huang L, Dai X. Wei Sheng Wu Xue Bao; 2012 Nov 04; 52(11):1318-25. PubMed ID: 23383502 [Abstract] [Full Text] [Related]
4. Thermophilic hydrogen-producing bacteria inhabiting deep-sea hydrothermal environments represented by Caloranaerobacter. Jiang L, Xu H, Zeng X, Wu X, Long M, Shao Z. Res Microbiol; 2015 Nov 04; 166(9):677-87. PubMed ID: 26026841 [Abstract] [Full Text] [Related]
5. Microbial succession during the transition from active to inactive stages of deep-sea hydrothermal vent sulfide chimneys. Hou J, Sievert SM, Wang Y, Seewald JS, Natarajan VP, Wang F, Xiao X. Microbiome; 2020 Jun 30; 8(1):102. PubMed ID: 32605604 [Abstract] [Full Text] [Related]
6. Biogeography and ecology of the rare and abundant microbial lineages in deep-sea hydrothermal vents. Anderson RE, Sogin ML, Baross JA. FEMS Microbiol Ecol; 2015 Jan 30; 91(1):1-11. PubMed ID: 25764538 [Abstract] [Full Text] [Related]
7. [Diversity of culturable sulfur-oxidizing bacteria in deep-sea hydrothermal vent environments of the South Atlantic]. Xu H, Jiang L, Li S, Zhong T, Lai Q, Shao Z. Wei Sheng Wu Xue Bao; 2016 Jan 04; 56(1):88-100. PubMed ID: 27305783 [Abstract] [Full Text] [Related]
8. Detection and phylogenetic analysis of the membrane-bound nitrate reductase (Nar) in pure cultures and microbial communities from deep-sea hydrothermal vents. Pérez-Rodríguez I, Bohnert KA, Cuebas M, Keddis R, Vetriani C. FEMS Microbiol Ecol; 2013 Nov 04; 86(2):256-67. PubMed ID: 23889124 [Abstract] [Full Text] [Related]
9. Sediment Microbial Diversity of Three Deep-Sea Hydrothermal Vents Southwest of the Azores. Cerqueira T, Pinho D, Froufe H, Santos RS, Bettencourt R, Egas C. Microb Ecol; 2017 Aug 04; 74(2):332-349. PubMed ID: 28144700 [Abstract] [Full Text] [Related]
10. Diversity patterns and isolation of Planctomycetes associated with metalliferous deposits from hydrothermal vent fields along the Valu Fa Ridge (SW Pacific). Storesund JE, Lanzèn A, García-Moyano A, Reysenbach AL, Øvreås L. Antonie Van Leeuwenhoek; 2018 Jun 04; 111(6):841-858. PubMed ID: 29423768 [Abstract] [Full Text] [Related]
11. Protistan grazing impacts microbial communities and carbon cycling at deep-sea hydrothermal vents. Hu SK, Herrera EL, Smith AR, Pachiadaki MG, Edgcomb VP, Sylva SP, Chan EW, Seewald JS, German CR, Huber JA. Proc Natl Acad Sci U S A; 2021 Jul 20; 118(29):. PubMed ID: 34266956 [Abstract] [Full Text] [Related]
12. Bacterial and archaeal communities in the deep-sea sediments of inactive hydrothermal vents in the Southwest India Ridge. Zhang L, Kang M, Xu J, Xu J, Shuai Y, Zhou X, Yang Z, Ma K. Sci Rep; 2016 May 12; 6():25982. PubMed ID: 27169490 [Abstract] [Full Text] [Related]
13. The structure of bacterial communities in the western Arctic Ocean as revealed by pyrosequencing of 16S rRNA genes. Kirchman DL, Cottrell MT, Lovejoy C. Environ Microbiol; 2010 May 12; 12(5):1132-43. PubMed ID: 20132284 [Abstract] [Full Text] [Related]
14. Life and death of deep-sea vents: bacterial diversity and ecosystem succession on inactive hydrothermal sulfides. Sylvan JB, Toner BM, Edwards KJ. mBio; 2012 May 12; 3(1):e00279-11. PubMed ID: 22275502 [Abstract] [Full Text] [Related]
15. Characteristics of the cultivable bacteria from sediments associated with two deep-sea hydrothermal vents in Okinawa Trough. Sun QL, Wang MQ, Sun L. World J Microbiol Biotechnol; 2015 Dec 12; 31(12):2025-37. PubMed ID: 26410427 [Abstract] [Full Text] [Related]
16. Metagenomic Signatures of Microbial Communities in Deep-Sea Hydrothermal Sediments of Azores Vent Fields. Cerqueira T, Barroso C, Froufe H, Egas C, Bettencourt R. Microb Ecol; 2018 Aug 12; 76(2):387-403. PubMed ID: 29354879 [Abstract] [Full Text] [Related]
17. Microbial diversity in deep-sea sediments from the Menez Gwen hydrothermal vent system of the Mid-Atlantic Ridge. Cerqueira T, Pinho D, Egas C, Froufe H, Altermark B, Candeias C, Santos RS, Bettencourt R. Mar Genomics; 2015 Dec 12; 24 Pt 3():343-55. PubMed ID: 26375668 [Abstract] [Full Text] [Related]
18. Heterotrophic Proteobacteria in the vicinity of diffuse hydrothermal venting. Meier DV, Bach W, Girguis PR, Gruber-Vodicka HR, Reeves EP, Richter M, Vidoudez C, Amann R, Meyerdierks A. Environ Microbiol; 2016 Dec 12; 18(12):4348-4368. PubMed ID: 27001712 [Abstract] [Full Text] [Related]
19. Antarctic marine biodiversity and deep-sea hydrothermal vents. Chown SL. PLoS Biol; 2012 Jan 12; 10(1):e1001232. PubMed ID: 22235192 [Abstract] [Full Text] [Related]
20. Uncultured bacterial diversity in a seawater recirculating aquaculture system revealed by 16S rRNA gene amplicon sequencing. Lee DE, Lee J, Kim YM, Myeong JI, Kim KH. J Microbiol; 2016 Apr 12; 54(4):296-304. PubMed ID: 27033205 [Abstract] [Full Text] [Related] Page: [Next] [New Search]