These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
1100 related items for PubMed ID: 26627918
1. Predicting Development of Glaucomatous Visual Field Conversion Using Baseline Fourier-Domain Optical Coherence Tomography. Zhang X, Loewen N, Tan O, Greenfield DS, Schuman JS, Varma R, Huang D, Advanced Imaging for Glaucoma Study Group. Am J Ophthalmol; 2016 Mar; 163():29-37. PubMed ID: 26627918 [Abstract] [Full Text] [Related]
2. Predictive Factors for the Rate of Visual Field Progression in the Advanced Imaging for Glaucoma Study. Zhang X, Parrish RK, Greenfield DS, Francis BA, Varma R, Schuman JS, Tan O, Huang D, Advanced Imaging for Glaucoma Study Group. Am J Ophthalmol; 2019 Jun; 202():62-71. PubMed ID: 30794787 [Abstract] [Full Text] [Related]
3. Detection of macular ganglion cell loss in preperimetric glaucoma patients with localized retinal nerve fibre defects by spectral-domain optical coherence tomography. Na JH, Lee K, Lee JR, Baek S, Yoo SJ, Kook MS. Clin Exp Ophthalmol; 2013 Dec; 41(9):870-80. PubMed ID: 23777476 [Abstract] [Full Text] [Related]
4. Prediction of Glaucoma Progression with Structural Parameters: Comparison of Optical Coherence Tomography and Clinical Disc Parameters. Daneshvar R, Yarmohammadi A, Alizadeh R, Henry S, Law SK, Caprioli J, Nouri-Mahdavi K. Am J Ophthalmol; 2019 Dec; 208():19-29. PubMed ID: 31247169 [Abstract] [Full Text] [Related]
5. Baseline Fourier-Domain Optical Coherence Tomography Structural Risk Factors for Visual Field Progression in the Advanced Imaging for Glaucoma Study. Zhang X, Dastiridou A, Francis BA, Tan O, Varma R, Greenfield DS, Schuman JS, Sehi M, Chopra V, Huang D, Advanced Imaging for Glaucoma Study Group. Am J Ophthalmol; 2016 Dec; 172():94-103. PubMed ID: 27651070 [Abstract] [Full Text] [Related]
6. Comparison of macular and peripapillary measurements for the detection of glaucoma: an optical coherence tomography study. Leung CK, Chan WM, Yung WH, Ng AC, Woo J, Tsang MK, Tse RK. Ophthalmology; 2005 Mar; 112(3):391-400. PubMed ID: 15745764 [Abstract] [Full Text] [Related]
7. The Association Between Clinical Features Seen on Fundus Photographs and Glaucomatous Damage Detected on Visual Fields and Optical Coherence Tomography Scans. Alhadeff PA, De Moraes CG, Chen M, Raza AS, Ritch R, Hood DC. J Glaucoma; 2017 May; 26(5):498-504. PubMed ID: 28333890 [Abstract] [Full Text] [Related]
8. The applicability of ganglion cell complex parameters determined from SD-OCT images to detect glaucomatous eyes. Arintawati P, Sone T, Akita T, Tanaka J, Kiuchi Y. J Glaucoma; 2013 Dec; 22(9):713-8. PubMed ID: 22668975 [Abstract] [Full Text] [Related]
9. Diagnostic accuracy of ganglion cell complex substructures in different stages of primary open-angle glaucoma. Elbendary AM, Abd El-Latef MH, Elsorogy HI, Enaam KM. Can J Ophthalmol; 2017 Aug; 52(4):355-360. PubMed ID: 28774516 [Abstract] [Full Text] [Related]
11. Retinal nerve fiber layer normative classification by optical coherence tomography for prediction of future visual field loss. Sung KR, Kim S, Lee Y, Yun SC, Na JH. Invest Ophthalmol Vis Sci; 2011 Apr 22; 52(5):2634-9. PubMed ID: 21282570 [Abstract] [Full Text] [Related]
12. Comparison of optic nerve head topography and visual field in eyes with open-angle and angle-closure glaucoma. Boland MV, Zhang L, Broman AT, Jampel HD, Quigley HA. Ophthalmology; 2008 Feb 22; 115(2):239-245.e2. PubMed ID: 18082888 [Abstract] [Full Text] [Related]
13. Diagnostic ability of retinal ganglion cell complex, retinal nerve fiber layer, and optic nerve head measurements by Fourier-domain optical coherence tomography. Schulze A, Lamparter J, Pfeiffer N, Berisha F, Schmidtmann I, Hoffmann EM. Graefes Arch Clin Exp Ophthalmol; 2011 Jul 22; 249(7):1039-45. PubMed ID: 21240522 [Abstract] [Full Text] [Related]