These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


112 related items for PubMed ID: 26638550

  • 1. [The interpretation of normal and pathological optical coherence tomography retinal image as compared to their histological cross-sections].
    Duchnik M, Machalińska A, Wiszniewska B.
    Klin Oczna; 2015; 117(2):113-8. PubMed ID: 26638550
    [Abstract] [Full Text] [Related]

  • 2. In vivo imaging of the mouse retina using high-resolution optical coherence tomography.
    Machalińska A, Lejkowska R, Duchnik M, Rogińska D, Kawa M, Wiszniewska B.
    Klin Oczna; 2014; 116(1):11-5. PubMed ID: 25137914
    [Abstract] [Full Text] [Related]

  • 3. In vivo three-dimensional high-resolution imaging of rodent retina with spectral-domain optical coherence tomography.
    Ruggeri M, Wehbe H, Jiao S, Gregori G, Jockovich ME, Hackam A, Duan Y, Puliafito CA.
    Invest Ophthalmol Vis Sci; 2007 Apr; 48(4):1808-14. PubMed ID: 17389515
    [Abstract] [Full Text] [Related]

  • 4. Ultra-high speed and ultra-high resolution spectral-domain optical coherence tomography and optical Doppler tomography in ophthalmology.
    Cense B, Chen TC, Nassif N, Pierce MC, Yun SH, Park BH, Bouma BE, Tearney GJ, de Boer JF.
    Bull Soc Belge Ophtalmol; 2006 Apr; (302):123-32. PubMed ID: 17265794
    [Abstract] [Full Text] [Related]

  • 5. Ophthalmic imaging by spectral optical coherence tomography.
    Wojtkowski M, Bajraszewski T, Gorczyńska I, Targowski P, Kowalczyk A, Wasilewski W, Radzewicz C.
    Am J Ophthalmol; 2004 Sep; 138(3):412-9. PubMed ID: 15364223
    [Abstract] [Full Text] [Related]

  • 6. Spectral domain optical coherence tomography: ultra-high speed, ultra-high resolution ophthalmic imaging.
    Chen TC, Cense B, Pierce MC, Nassif N, Park BH, Yun SH, White BR, Bouma BE, Tearney GJ, de Boer JF.
    Arch Ophthalmol; 2005 Dec; 123(12):1715-20. PubMed ID: 16344444
    [Abstract] [Full Text] [Related]

  • 7. Ocular fundus reference images from optical coherence tomography.
    Guimarães P, Rodrigues P, Lobo C, Leal S, Figueira J, Serranho P, Bernardes R.
    Comput Med Imaging Graph; 2014 Jul; 38(5):381-9. PubMed ID: 24631317
    [Abstract] [Full Text] [Related]

  • 8. Automated layer segmentation of optical coherence tomography images.
    Lu S, Cheung CY, Liu J, Lim JH, Leung CK, Wong TY.
    IEEE Trans Biomed Eng; 2010 Oct; 57(10):2605-8. PubMed ID: 20595078
    [Abstract] [Full Text] [Related]

  • 9. Simultaneous fundus imaging and optical coherence tomography of the mouse retina.
    Kocaoglu OP, Uhlhorn SR, Hernandez E, Juarez RA, Will R, Parel JM, Manns F.
    Invest Ophthalmol Vis Sci; 2007 Mar; 48(3):1283-9. PubMed ID: 17325174
    [Abstract] [Full Text] [Related]

  • 10. Optical coherence tomography in imaging of macular diseases.
    Figurska M, Robaszkiewicz J, Wierzbowska J.
    Klin Oczna; 2010 Mar; 112(4-6):138-46. PubMed ID: 20825070
    [Abstract] [Full Text] [Related]

  • 11. Ocular tissue imaging using ultrahigh-resolution, full-field optical coherence tomography.
    Grieve K, Paques M, Dubois A, Sahel J, Boccara C, Le Gargasson JF.
    Invest Ophthalmol Vis Sci; 2004 Nov; 45(11):4126-31. PubMed ID: 15505065
    [Abstract] [Full Text] [Related]

  • 12. Quantitative thickness measurement of retinal layers imaged by optical coherence tomography.
    Shahidi M, Wang Z, Zelkha R.
    Am J Ophthalmol; 2005 Jun; 139(6):1056-61. PubMed ID: 15953436
    [Abstract] [Full Text] [Related]

  • 13. Phase-contrast OCT imaging of transverse flows in the mouse retina and choroid.
    Fingler J, Readhead C, Schwartz DM, Fraser SE.
    Invest Ophthalmol Vis Sci; 2008 Nov; 49(11):5055-9. PubMed ID: 18566457
    [Abstract] [Full Text] [Related]

  • 14. Use of a combined slit-lamp SD-OCT to obtain anterior and posterior segment images in selected animal species.
    Rosolen SG, Rivière ML, Lavillegrand S, Gautier B, Picaud S, LeGargasson JF.
    Vet Ophthalmol; 2012 Sep; 15 Suppl 2():105-15. PubMed ID: 22616780
    [Abstract] [Full Text] [Related]

  • 15. Differentiation of degenerative retinoschisis from retinal detachment using optical coherence tomography.
    Ip M, Garza-Karren C, Duker JS, Reichel E, Swartz JC, Amirikia A, Puliafito CA.
    Ophthalmology; 1999 Mar; 106(3):600-5. PubMed ID: 10080221
    [Abstract] [Full Text] [Related]

  • 16. Longitudinal study of retinal degeneration in a rat using spectral domain optical coherence tomography.
    Sarunic MV, Yazdanpanah A, Gibson E, Xu J, Bai Y, Lee S, Saragovi HU, Beg MF.
    Opt Express; 2010 Oct 25; 18(22):23435-41. PubMed ID: 21164686
    [Abstract] [Full Text] [Related]

  • 17. [Optical coherence tomography in Stargardt's dystrophy].
    Samsel A, Dróbecka-Brydak E, Brydak-Godowska J, Ciszewska J, Kecik D.
    Klin Oczna; 2005 Oct 25; 107(10-12):668-71. PubMed ID: 16619816
    [Abstract] [Full Text] [Related]

  • 18. Optical coherence tomography of the human retina.
    Hee MR, Izatt JA, Swanson EA, Huang D, Schuman JS, Lin CP, Puliafito CA, Fujimoto JG.
    Arch Ophthalmol; 1995 Mar 25; 113(3):325-32. PubMed ID: 7887846
    [Abstract] [Full Text] [Related]

  • 19. Segmentation of intra-retinal layers from optical coherence tomography images using an active contour approach.
    Yazdanpanah A, Hamarneh G, Smith BR, Sarunic MV.
    IEEE Trans Med Imaging; 2011 Feb 25; 30(2):484-96. PubMed ID: 20952331
    [Abstract] [Full Text] [Related]

  • 20. Three-dimensional optical coherence tomography imaging of retinal sheet implants in live rats.
    Seiler MJ, Rao B, Aramant RB, Yu L, Wang Q, Kitayama E, Pham S, Yan F, Chen Z, Keirstead HS.
    J Neurosci Methods; 2010 May 15; 188(2):250-7. PubMed ID: 20219535
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 6.