These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


114 related items for PubMed ID: 26639178

  • 1. Hidden symmetry and protection of Dirac points on the honeycomb lattice.
    Hou JM, Chen W.
    Sci Rep; 2015 Dec 07; 5():17571. PubMed ID: 26639178
    [Abstract] [Full Text] [Related]

  • 2. Creating, moving and merging Dirac points with a Fermi gas in a tunable honeycomb lattice.
    Tarruell L, Greif D, Uehlinger T, Jotzu G, Esslinger T.
    Nature; 2012 Mar 14; 483(7389):302-5. PubMed ID: 22422263
    [Abstract] [Full Text] [Related]

  • 3. A first theoretical realization of honeycomb topological magnon insulator.
    Owerre SA.
    J Phys Condens Matter; 2016 Sep 28; 28(38):386001. PubMed ID: 27437569
    [Abstract] [Full Text] [Related]

  • 4. Dirac point movement and topological phase transition in patterned graphene.
    Dvorak M, Wu Z.
    Nanoscale; 2015 Feb 28; 7(8):3645-50. PubMed ID: 25636026
    [Abstract] [Full Text] [Related]

  • 5. Z2 topological edge state in honeycomb lattice of coupled resonant optical waveguides with a flat band.
    Zhu XY, Gupta SK, Sun XC, He C, Li GX, Jiang JH, Liu XP, Lu MH, Chen YF.
    Opt Express; 2018 Sep 17; 26(19):24307-24317. PubMed ID: 30469552
    [Abstract] [Full Text] [Related]

  • 6. Weyl semimetals in optical lattices: moving and merging of Weyl points, and hidden symmetry at Weyl points.
    Hou JM, Chen W.
    Sci Rep; 2016 Sep 20; 6():33512. PubMed ID: 27644114
    [Abstract] [Full Text] [Related]

  • 7. Manipulating type-I and type-II Dirac polaritons in cavity-embedded honeycomb metasurfaces.
    Mann CR, Sturges TJ, Weick G, Barnes WL, Mariani E.
    Nat Commun; 2018 Jun 06; 9(1):2194. PubMed ID: 29875384
    [Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10. Dirac-like plasmons in honeycomb lattices of metallic nanoparticles.
    Weick G, Woollacott C, Barnes WL, Hess O, Mariani E.
    Phys Rev Lett; 2013 Mar 08; 110(10):106801. PubMed ID: 23521276
    [Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16. Tinene: a two-dimensional Dirac material with a 72 meV band gap.
    Cai B, Zhang S, Hu Z, Hu Y, Zou Y, Zeng H.
    Phys Chem Chem Phys; 2015 May 21; 17(19):12634-8. PubMed ID: 25904409
    [Abstract] [Full Text] [Related]

  • 17. Topological phase transition induced by band structure modulation in a Chern insulator.
    Mondal S, Kapri P, Dey B, Ghosh TK, Basu S.
    J Phys Condens Matter; 2021 May 05; 33(22):. PubMed ID: 33602888
    [Abstract] [Full Text] [Related]

  • 18. Topological phase transition with p orbitals in the exciton-polariton honeycomb lattice.
    Zhang C, Wang Y, Zhang W.
    J Phys Condens Matter; 2019 Aug 21; 31(33):335403. PubMed ID: 31100741
    [Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20. Squeezed Dirac and topological magnons in a bosonic honeycomb optical lattice.
    Owerre SA, Nsofini J.
    J Phys Condens Matter; 2017 Nov 15; 29(45):455802. PubMed ID: 29049033
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 6.