These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


654 related items for PubMed ID: 26652835

  • 1. Graphene-Assisted Label-Free Homogeneous Electrochemical Biosensing Strategy based on Aptamer-Switched Bidirectional DNA Polymerization.
    Wang W, Ge L, Sun X, Hou T, Li F.
    ACS Appl Mater Interfaces; 2015 Dec 30; 7(51):28566-75. PubMed ID: 26652835
    [Abstract] [Full Text] [Related]

  • 2. Affinity-Mediated Homogeneous Electrochemical Aptasensor on a Graphene Platform for Ultrasensitive Biomolecule Detection via Exonuclease-Assisted Target-Analog Recycling Amplification.
    Ge L, Wang W, Sun X, Hou T, Li F.
    Anal Chem; 2016 Feb 16; 88(4):2212-9. PubMed ID: 26813733
    [Abstract] [Full Text] [Related]

  • 3. An electrochemical aptasensor for detection of IFN-γ using graphene and a dual signal amplification strategy based on the exonuclease-mediated surface-initiated enzymatic polymerization.
    Liu C, Xiang G, Jiang D, Liu L, Liu F, Luo F, Pu X.
    Analyst; 2015 Nov 21; 140(22):7784-91. PubMed ID: 26460269
    [Abstract] [Full Text] [Related]

  • 4. Reduced graphene oxide/nile blue/gold nanoparticles complex-modified glassy carbon electrode used as a sensitive and label-free aptasensor for ratiometric electrochemical sensing of dopamine.
    Jin H, Zhao C, Gui R, Gao X, Wang Z.
    Anal Chim Acta; 2018 Sep 26; 1025():154-162. PubMed ID: 29801604
    [Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6. Homogeneous electrochemical detection of ochratoxin A in foodstuff using aptamer-graphene oxide nanosheets and DNase I-based target recycling reaction.
    Sun AL, Zhang YF, Sun GP, Wang XN, Tang D.
    Biosens Bioelectron; 2017 Mar 15; 89(Pt 1):659-665. PubMed ID: 26707001
    [Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8. An aptamer-based electrochemical biosensor for the detection of Salmonella.
    Ma X, Jiang Y, Jia F, Yu Y, Chen J, Wang Z.
    J Microbiol Methods; 2014 Mar 15; 98():94-8. PubMed ID: 24445115
    [Abstract] [Full Text] [Related]

  • 9. Aptamer-DNA concatamer-quantum dots based electrochemical biosensing strategy for green and ultrasensitive detection of tumor cells via mercury-free anodic stripping voltammetry.
    Zheng Y, Wang X, He S, Gao Z, Di Y, Lu K, Li K, Wang J.
    Biosens Bioelectron; 2019 Feb 01; 126():261-268. PubMed ID: 30445301
    [Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11. A label-free IFN-γ aptasensor based on target-triggered allosteric switching of aptamer beacon and streptavidin-inorganic hybrid composites.
    Xu L, Lei S, Liu Z, Ouyang G, Zou L, Ye B.
    Anal Chim Acta; 2019 Dec 09; 1087():29-35. PubMed ID: 31585563
    [Abstract] [Full Text] [Related]

  • 12. Increased electrocatalyzed performance through hairpin oligonucleotide aptamer-functionalized gold nanorods labels and graphene-streptavidin nanomatrix: Highly selective and sensitive electrochemical biosensor of carcinoembryonic antigen.
    Wen W, Huang JY, Bao T, Zhou J, Xia HX, Zhang XH, Wang SF, Zhao YD.
    Biosens Bioelectron; 2016 Sep 15; 83():142-8. PubMed ID: 27111123
    [Abstract] [Full Text] [Related]

  • 13. Functionalized graphene as sensitive electrochemical label in target-dependent linkage of split aptasensor for dual detection.
    Feng L, Zhang Z, Ren J, Qu X.
    Biosens Bioelectron; 2014 Dec 15; 62():52-8. PubMed ID: 24976151
    [Abstract] [Full Text] [Related]

  • 14. An amplified graphene oxide-based fluorescence aptasensor based on target-triggered aptamer hairpin switch and strand-displacement polymerization recycling for bioassays.
    Hu K, Liu J, Chen J, Huang Y, Zhao S, Tian J, Zhang G.
    Biosens Bioelectron; 2013 Apr 15; 42():598-602. PubMed ID: 23261695
    [Abstract] [Full Text] [Related]

  • 15. Homogeneous and label-free electrochemiluminescence aptasensor based on the difference of electrostatic interaction and exonuclease-assisted target recycling amplification.
    Ni J, Yang W, Wang Q, Luo F, Guo L, Qiu B, Lin Z, Yang H.
    Biosens Bioelectron; 2018 May 15; 105():182-187. PubMed ID: 29412943
    [Abstract] [Full Text] [Related]

  • 16. Aptasensor for electrochemical sensing of angiogenin based on electrode modified by cationic polyelectrolyte-functionalized graphene/gold nanoparticles composites.
    Chen Z, Zhang C, Li X, Ma H, Wan C, Li K, Lin Y.
    Biosens Bioelectron; 2015 Mar 15; 65():232-7. PubMed ID: 25461163
    [Abstract] [Full Text] [Related]

  • 17. A label-free electrochemical aptasensor based on 3D porous CS/rGO/GCE for acetamiprid residue detection.
    Yi J, Liu Z, Liu J, Liu H, Xia F, Tian D, Zhou C.
    Biosens Bioelectron; 2020 Jan 15; 148():111827. PubMed ID: 31698302
    [Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19. Label-free electrochemical lead (II) aptasensor using thionine as the signaling molecule and graphene as signal-enhancing platform.
    Gao F, Gao C, He S, Wang Q, Wu A.
    Biosens Bioelectron; 2016 Jul 15; 81():15-22. PubMed ID: 26913503
    [Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 33.