These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
536 related items for PubMed ID: 26654531
1. Genetic basis of maize kernel starch content revealed by high-density single nucleotide polymorphism markers in a recombinant inbred line population. Wang T, Wang M, Hu S, Xiao Y, Tong H, Pan Q, Xue J, Yan J, Li J, Yang X. BMC Plant Biol; 2015 Dec 12; 15():288. PubMed ID: 26654531 [Abstract] [Full Text] [Related]
2. Genetic dissection of maize plant architecture with an ultra-high density bin map based on recombinant inbred lines. Zhou Z, Zhang C, Zhou Y, Hao Z, Wang Z, Zeng X, Di H, Li M, Zhang D, Yong H, Zhang S, Weng J, Li X. BMC Genomics; 2016 Mar 03; 17():178. PubMed ID: 26940065 [Abstract] [Full Text] [Related]
3. Verification of QTL for grain starch content and its genetic correlation with oil content using two connected RIL populations in high-oil maize. Yang G, Dong Y, Li Y, Wang Q, Shi Q, Zhou Q. PLoS One; 2013 Mar 03; 8(1):e53770. PubMed ID: 23320103 [Abstract] [Full Text] [Related]
4. Mapping of QTL for agronomic traits using high-density SNPs with an RIL population in maize. Sa KJ, Choi IY, Park JY, Choi JK, Ryu SH, Lee JK. Genes Genomics; 2021 Dec 03; 43(12):1403-1411. PubMed ID: 34591233 [Abstract] [Full Text] [Related]
5. Genetic basis of kernel starch content decoded in a maize multi-parent population. Hu S, Wang M, Zhang X, Chen W, Song X, Fu X, Fang H, Xu J, Xiao Y, Li Y, Bai G, Li J, Yang X. Plant Biotechnol J; 2021 Nov 03; 19(11):2192-2205. PubMed ID: 34077617 [Abstract] [Full Text] [Related]
6. Dissecting tocopherols content in maize (Zea mays L.), using two segregating populations and high-density single nucleotide polymorphism markers. Shutu X, Dalong Z, Ye C, Yi Z, Shah T, Ali F, Qing L, Zhigang L, Weidong W, Jiansheng L, Xiaohong Y, Jianbing Y. BMC Plant Biol; 2012 Nov 02; 12():201. PubMed ID: 23122295 [Abstract] [Full Text] [Related]
7. QTL mapping for maize starch content and candidate gene prediction combined with co-expression network analysis. Lin F, Zhou L, He B, Zhang X, Dai H, Qian Y, Ruan L, Zhao H. Theor Appl Genet; 2019 Jul 02; 132(7):1931-1941. PubMed ID: 30887095 [Abstract] [Full Text] [Related]
8. Multi-environment QTL analysis of grain morphology traits and fine mapping of a kernel-width QTL in Zheng58 × SK maize population. Raihan MS, Liu J, Huang J, Guo H, Pan Q, Yan J. Theor Appl Genet; 2016 Aug 02; 129(8):1465-77. PubMed ID: 27154588 [Abstract] [Full Text] [Related]
9. Genetic basis of maize kernel oil-related traits revealed by high-density SNP markers in a recombinant inbred line population. Fang H, Fu X, Ge H, Zhang A, Shan T, Wang Y, Li P, Wang B. BMC Plant Biol; 2021 Jul 21; 21(1):344. PubMed ID: 34289812 [Abstract] [Full Text] [Related]
10. QTL mapping of agronomic waterlogging tolerance using recombinant inbred lines derived from tropical maize (Zea mays L) germplasm. Zaidi PH, Rashid Z, Vinayan MT, Almeida GD, Phagna RK, Babu R. PLoS One; 2015 Jul 21; 10(4):e0124350. PubMed ID: 25884393 [Abstract] [Full Text] [Related]
11. Genetic architecture of the maize kernel row number revealed by combining QTL mapping using a high-density genetic map and bulked segregant RNA sequencing. Liu C, Zhou Q, Dong L, Wang H, Liu F, Weng J, Li X, Xie C. BMC Genomics; 2016 Nov 14; 17(1):915. PubMed ID: 27842488 [Abstract] [Full Text] [Related]
12. Detection of quantitative trait loci for kernel oil and protein concentration in a B73 and Zheng58 maize cross. Yang Z, Li X, Zhang N, Zhang YN, Jiang HW, Gao J, Kuai BK, Ding YL, Huang XQ. Genet Mol Res; 2016 Sep 30; 15(3):. PubMed ID: 27706793 [Abstract] [Full Text] [Related]
13. QTL mapping analysis of maize plant type based on SNP molecular marker. Zhu W, Zhao Y, Liu J, Huang L, Lu X, Kang D. Cell Mol Biol (Noisy-le-grand); 2019 Feb 28; 65(2):18-27. PubMed ID: 30860467 [Abstract] [Full Text] [Related]
14. Genome-Wide Detection of Major and Epistatic Effect QTLs for Seed Protein and Oil Content in Soybean Under Multiple Environments Using High-Density Bin Map. Karikari B, Li S, Bhat JA, Cao Y, Kong J, Yang J, Gai J, Zhao T. Int J Mol Sci; 2019 Feb 23; 20(4):. PubMed ID: 30813455 [Abstract] [Full Text] [Related]
15. QTLs for enzyme activities and soluble carbohydrates involved in starch accumulation during grain filling in maize. Thévenot C, Simond-Côte E, Reyss A, Manicacci D, Trouverie J, Le Guilloux M, Ginhoux V, Sidicina F, Prioul JL. J Exp Bot; 2005 Mar 23; 56(413):945-58. PubMed ID: 15710637 [Abstract] [Full Text] [Related]
16. Combining Quantitative Genetics Approaches with Regulatory Network Analysis to Dissect the Complex Metabolism of the Maize Kernel. Wen W, Liu H, Zhou Y, Jin M, Yang N, Li D, Luo J, Xiao Y, Pan Q, Tohge T, Fernie AR, Yan J. Plant Physiol; 2016 Jan 23; 170(1):136-46. PubMed ID: 26556794 [Abstract] [Full Text] [Related]
17. Fine-mapping of qGW4.05, a major QTL for kernel weight and size in maize. Chen L, Li YX, Li C, Wu X, Qin W, Li X, Jiao F, Zhang X, Zhang D, Shi Y, Song Y, Li Y, Wang T. BMC Plant Biol; 2016 Apr 12; 16():81. PubMed ID: 27068015 [Abstract] [Full Text] [Related]
18. Genetic analysis of maize shank length by QTL mapping in three recombinant inbred line populations. Liu M, He W, Zhang A, Zhang L, Sun D, Gao Y, Ni P, Ma X, Cui Z, Ruan Y. Plant Sci; 2021 Feb 12; 303():110767. PubMed ID: 33487352 [Abstract] [Full Text] [Related]
19. Genetic architecture of maize kernel row number and whole genome prediction. Liu L, Du Y, Huo D, Wang M, Shen X, Yue B, Qiu F, Zheng Y, Yan J, Zhang Z. Theor Appl Genet; 2015 Nov 12; 128(11):2243-54. PubMed ID: 26188589 [Abstract] [Full Text] [Related]
20. Fine mapping and candidate gene analysis of qhkw5-3, a major QTL for kernel weight in maize. Li W, Bai Q, Zhan W, Ma C, Wang S, Feng Y, Zhang M, Zhu Y, Cheng M, Xi Z. Theor Appl Genet; 2019 Sep 12; 132(9):2579-2589. PubMed ID: 31187154 [Abstract] [Full Text] [Related] Page: [Next] [New Search]