These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
253 related items for PubMed ID: 26655772
1. Experimental Evolution under Fluctuating Thermal Conditions Does Not Reproduce Patterns of Adaptive Clinal Differentiation in Drosophila melanogaster. Kellermann V, Hoffmann AA, Kristensen TN, Moghadam NN, Loeschcke V. Am Nat; 2015 Nov; 186(5):582-93. PubMed ID: 26655772 [Abstract] [Full Text] [Related]
2. Climatic selection on genes and traits after a 100 year-old invasion: a critical look at the temperate-tropical clines in Drosophila melanogaster from eastern Australia. Hoffmann AA, Weeks AR. Genetica; 2007 Feb; 129(2):133-47. PubMed ID: 16955331 [Abstract] [Full Text] [Related]
3. The effect of developmental temperature on the genetic architecture underlying size and thermal clines in Drosophila melanogaster and D. simulans from the east coast of Australia. van Heerwaarden B, Sgrò CM. Evolution; 2011 Apr; 65(4):1048-67. PubMed ID: 21091469 [Abstract] [Full Text] [Related]
4. A Drosophila laboratory evolution experiment points to low evolutionary potential under increased temperatures likely to be experienced in the future. Schou MF, Kristensen TN, Kellermann V, Schlötterer C, Loeschcke V. J Evol Biol; 2014 Sep; 27(9):1859-68. PubMed ID: 24925446 [Abstract] [Full Text] [Related]
5. Complex patterns of local adaptation in heat tolerance in Drosophila simulans from eastern Australia. van Heerwaarden B, Lee RF, Wegener B, Weeks AR, Sgró CM. J Evol Biol; 2012 Sep; 25(9):1765-78. PubMed ID: 22775577 [Abstract] [Full Text] [Related]
6. Postponed reproduction as an adaptation to winter conditions in Drosophila melanogaster: evidence for clinal variation under semi-natural conditions. Mitrovski P, Hoffmann AA. Proc Biol Sci; 2001 Oct 22; 268(1481):2163-8. PubMed ID: 11600081 [Abstract] [Full Text] [Related]
7. Thermal plasticity in Drosophila melanogaster populations from eastern Australia: quantitative traits to transcripts. Clemson AS, Sgrò CM, Telonis-Scott M. J Evol Biol; 2016 Dec 22; 29(12):2447-2463. PubMed ID: 27542565 [Abstract] [Full Text] [Related]
8. Keeping your options open: Maintenance of thermal plasticity during adaptation to a stable environment. Fragata I, Lopes-Cunha M, Bárbaro M, Kellen B, Lima M, Faria GS, Seabra SG, Santos M, Simões P, Matos M. Evolution; 2016 Jan 22; 70(1):195-206. PubMed ID: 26626438 [Abstract] [Full Text] [Related]
9. A multivariate test of evolutionary constraints for thermal tolerance in Drosophila melanogaster. Williams BR, VAN Heerwaarden B, Dowling DK, Sgrò CM. J Evol Biol; 2012 Jul 22; 25(7):1415-26. PubMed ID: 22587877 [Abstract] [Full Text] [Related]
10. Candidate genes and thermal phenotypes: identifying ecologically important genetic variation for thermotolerance in the Australian Drosophila melanogaster cline. Rako L, Blacket MJ, McKechnie SW, Hoffmann AA. Mol Ecol; 2007 Jul 22; 16(14):2948-57. PubMed ID: 17614909 [Abstract] [Full Text] [Related]
11. Experimental Support That Natural Selection Has Shaped the Latitudinal Distribution of Mitochondrial Haplotypes in Australian Drosophila melanogaster. Camus MF, Wolff JN, Sgrò CM, Dowling DK. Mol Biol Evol; 2017 Oct 01; 34(10):2600-2612. PubMed ID: 28637217 [Abstract] [Full Text] [Related]
13. Three selections are better than one: clinal variation of thermal QTL from independent selection experiments in Drosophila. Rand DM, Weinreich DM, Lerman D, Folk D, Gilchrist GW. Evolution; 2010 Oct 01; 64(10):2921-34. PubMed ID: 20497214 [Abstract] [Full Text] [Related]
14. Physiological climatic limits in Drosophila: patterns and implications. Hoffmann AA. J Exp Biol; 2010 Mar 15; 213(6):870-80. PubMed ID: 20190112 [Abstract] [Full Text] [Related]
15. Parallel clinal variation in the mid-day siesta of Drosophila melanogaster implicates continent-specific targets of natural selection. Yang Y, Edery I. PLoS Genet; 2018 Sep 15; 14(9):e1007612. PubMed ID: 30180162 [Abstract] [Full Text] [Related]
16. Parallel gene expression evolution in natural and laboratory evolved populations. Hsu SK, Belmouaden C, Nolte V, Schlötterer C. Mol Ecol; 2021 Feb 15; 30(4):884-894. PubMed ID: 32979867 [Abstract] [Full Text] [Related]
17. Phenotypic plasticity is not affected by experimental evolution in constant, predictable or unpredictable fluctuating thermal environments. Manenti T, Loeschcke V, Moghadam NN, Sørensen JG. J Evol Biol; 2015 Nov 15; 28(11):2078-87. PubMed ID: 26299271 [Abstract] [Full Text] [Related]
18. Variation in thermal performance and reaction norms among populations of Drosophila melanogaster. Klepsatel P, Gáliková M, De Maio N, Huber CD, Schlötterer C, Flatt T. Evolution; 2013 Dec 15; 67(12):3573-87. PubMed ID: 24299409 [Abstract] [Full Text] [Related]
19. Developmental acclimation affects clinal variation in stress resistance traits in Drosophila buzzatii. Sarup P, Loeschcke V. J Evol Biol; 2010 May 15; 23(5):957-65. PubMed ID: 20298441 [Abstract] [Full Text] [Related]
20. Sensitivity to thermal extremes in Australian Drosophila implies similar impacts of climate change on the distribution of widespread and tropical species. Overgaard J, Kearney MR, Hoffmann AA. Glob Chang Biol; 2014 Jun 15; 20(6):1738-50. PubMed ID: 24549716 [Abstract] [Full Text] [Related] Page: [Next] [New Search]