These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
465 related items for PubMed ID: 26656530
1. Comparative Transcriptome Analysis of Recessive Male Sterility (RGMS) in Sterile and Fertile Brassica napus Lines. Qu C, Fu F, Liu M, Zhao H, Liu C, Li J, Tang Z, Xu X, Qiu X, Wang R, Lu K. PLoS One; 2015; 10(12):e0144118. PubMed ID: 26656530 [Abstract] [Full Text] [Related]
2. Comparative transcript profiling of fertile and sterile flower buds from multiple-allele-inherited male sterility in Chinese cabbage (Brassica campestris L. ssp. pekinensis). Zhou X, Liu Z, Ji R, Feng H. Mol Genet Genomics; 2017 Oct; 292(5):967-990. PubMed ID: 28492984 [Abstract] [Full Text] [Related]
3. Analysis of gene expression profile in pollen development of recessive genic male sterile Brassica napus L. line S45A. Chen Y, Lei S, Zhou Z, Zeng F, Yi B, Wen J, Shen J, Ma C, Tu J, Fu T. Plant Cell Rep; 2009 Sep; 28(9):1363-72. PubMed ID: 19562345 [Abstract] [Full Text] [Related]
4. Comparative Transcriptome Analysis between Fertile and CMS Flower Buds in Wucai (Brassica campestris L.). Chen G, Ye X, Zhang S, Zhu S, Yuan L, Hou J, Wang C. BMC Genomics; 2018 Dec 12; 19(1):908. PubMed ID: 30541424 [Abstract] [Full Text] [Related]
5. Identification of miRNAs and their target genes in genic male sterility lines in Brassica napus by small RNA sequencing. Jiang J, Xu P, Li Y, Li Y, Zhou X, Jiang M, Zhang J, Zhu J, Wang W, Yang L. BMC Plant Biol; 2021 Nov 09; 21(1):520. PubMed ID: 34753417 [Abstract] [Full Text] [Related]
6. Transcriptome and Hormone Comparison of Three Cytoplasmic Male Sterile Systems in Brassica napus. Ding B, Hao M, Mei D, Zaman QU, Sang S, Wang H, Wang W, Fu L, Cheng H, Hu Q. Int J Mol Sci; 2018 Dec 12; 19(12):. PubMed ID: 30545163 [Abstract] [Full Text] [Related]
7. Comparative transcriptome analysis provides insight into the important pathways and key genes related to the pollen abortion in the thermo-sensitive genic male sterile line 373S in Brassica napus L. Sun Y, Zhang D, Dong H, Wang Z, Wang J, Lv H, Guo Y, Hu S. Funct Integr Genomics; 2022 Dec 28; 23(1):26. PubMed ID: 36576592 [Abstract] [Full Text] [Related]
8. Defective pollen wall contributes to male sterility in the male sterile line 1355A of cotton. Wu Y, Min L, Wu Z, Yang L, Zhu L, Yang X, Yuan D, Guo X, Zhang X. Sci Rep; 2015 Jun 05; 5():9608. PubMed ID: 26043720 [Abstract] [Full Text] [Related]
9. Comparative transcript profiling of the fertile and sterile flower buds of pol CMS in B. napus. An H, Yang Z, Yi B, Wen J, Shen J, Tu J, Ma C, Fu T. BMC Genomics; 2014 Apr 03; 15():258. PubMed ID: 24707970 [Abstract] [Full Text] [Related]
10. Microarray analysis reveals altered expression of a large number of nuclear genes in developing cytoplasmic male sterile Brassica napus flowers. Carlsson J, Lagercrantz U, Sundström J, Teixeira R, Wellmer F, Meyerowitz EM, Glimelius K. Plant J; 2007 Feb 03; 49(3):452-62. PubMed ID: 17217466 [Abstract] [Full Text] [Related]
11. Molecular Analysis Uncovers the Mechanism of Fertility Restoration in Temperature-Sensitive Polima Cytoplasmic Male-Sterile Brassica napus. Xiao Q, Wang H, Chen H, Chen X, Wen J, Dai C, Ma C, Tu J, Shen J, Fu T, Yi B. Int J Mol Sci; 2021 Nov 18; 22(22):. PubMed ID: 34830333 [Abstract] [Full Text] [Related]
12. Global transcriptome analysis reveals potential genes associated with genic male sterility of rapeseed (Brassica napus L.). Jiang J, Xu P, Zhang J, Li Y, Zhou X, Jiang M, Zhu J, Wang W, Yang L. Front Plant Sci; 2022 Nov 18; 13():1004781. PubMed ID: 36340380 [No Abstract] [Full Text] [Related]
13. Comparative transcriptome analysis reveals carbohydrate and lipid metabolism blocks in Brassica napus L. male sterility induced by the chemical hybridization agent monosulfuron ester sodium. Li Z, Cheng Y, Cui J, Zhang P, Zhao H, Hu S. BMC Genomics; 2015 Mar 17; 16(1):206. PubMed ID: 25880309 [Abstract] [Full Text] [Related]
14. An RNA-seq transcriptome analysis of floral buds of an interspecific Brassica hybrid between B. carinata and B. napus. Chu P, Liu H, Yang Q, Wang Y, Yan G, Guan R. Plant Reprod; 2014 Dec 17; 27(4):225-37. PubMed ID: 25398253 [Abstract] [Full Text] [Related]
15. Recessive male sterility in cabbage (Brassica oleracea var. capitata) caused by loss of function of BoCYP704B1 due to the insertion of a LTR-retrotransposon. Ji JL, Yang LM, Fang ZY, Zhuang M, Zhang YY, Lv HH, Liu YM, Li ZS. Theor Appl Genet; 2017 Jul 17; 130(7):1441-1451. PubMed ID: 28405714 [Abstract] [Full Text] [Related]
16. Full-length transcriptome analysis reveals the differences between floral buds of recessive genic male-sterile line (RMS3185A) and fertile line (RMS3185B) of cabbage. Tian A, Zhang E, Cui Z. Planta; 2021 Jan 05; 253(1):21. PubMed ID: 33399991 [Abstract] [Full Text] [Related]
17. The initial deficiency of protein processing and flavonoids biosynthesis were the main mechanisms for the male sterility induced by SX-1 in Brassica napus. Ning L, Lin Z, Gu J, Gan L, Li Y, Wang H, Miao L, Zhang L, Wang B, Li M. BMC Genomics; 2018 Nov 07; 19(1):806. PubMed ID: 30404610 [Abstract] [Full Text] [Related]
18. Cytological observation of anther structure and genetic investigation of a thermo-sensitive genic male sterile line 373S in Brassica napus L. Sun Y, Zhang D, Wang Z, Guo Y, Sun X, Li W, Zhi W, Hu S. BMC Plant Biol; 2020 Jan 06; 20(1):8. PubMed ID: 31906856 [Abstract] [Full Text] [Related]
19. Comparative Cytological and Transcriptome Analyses of Anther Development in Nsa Cytoplasmic Male Sterile (1258A) and Maintainer Lines in Brassica napus Produced by Distant Hybridization. Xing M, Guan C, Guan M. Int J Mol Sci; 2022 Feb 11; 23(4):. PubMed ID: 35216116 [Abstract] [Full Text] [Related]
20. Comprehensive analysis of Ogura cytoplasmic male sterility-related genes in turnip (Brassica rapa ssp. rapifera) using RNA sequencing analysis and bioinformatics. Lin S, Miao Y, Su S, Xu J, Jin L, Sun D, Peng R, Huang L, Cao J. PLoS One; 2019 Feb 11; 14(6):e0218029. PubMed ID: 31199816 [Abstract] [Full Text] [Related] Page: [Next] [New Search]