These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


407 related items for PubMed ID: 26657640

  • 1.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 2. A versatile interaction platform on the Mex67-Mtr2 receptor creates an overlap between mRNA and ribosome export.
    Yao W, Lutzmann M, Hurt E.
    EMBO J; 2008 Jan 09; 27(1):6-16. PubMed ID: 18046452
    [Abstract] [Full Text] [Related]

  • 3. Nuclear export of ribosomal 60S subunits by the general mRNA export receptor Mex67-Mtr2.
    Yao W, Roser D, Köhler A, Bradatsch B, Bassler J, Hurt E.
    Mol Cell; 2007 Apr 13; 26(1):51-62. PubMed ID: 17434126
    [Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7. Structural similarity in the absence of sequence homology of the messenger RNA export factors Mtr2 and p15.
    Fribourg S, Conti E.
    EMBO Rep; 2003 Jul 13; 4(7):699-703. PubMed ID: 12835756
    [Abstract] [Full Text] [Related]

  • 8. Structural characterization of the principal mRNA-export factor Mex67-Mtr2 from Chaetomium thermophilum.
    Aibara S, Valkov E, Lamers MH, Dimitrova L, Hurt E, Stewart M.
    Acta Crystallogr F Struct Biol Commun; 2015 Jul 13; 71(Pt 7):876-88. PubMed ID: 26144233
    [Abstract] [Full Text] [Related]

  • 9. Chemical cross-linking and mass spectrometry to determine the subunit interaction network in a recombinant human SAGA HAT subcomplex.
    Nguyen-Huynh NT, Sharov G, Potel C, Fichter P, Trowitzsch S, Berger I, Lamour V, Schultz P, Potier N, Leize-Wagner E.
    Protein Sci; 2015 Aug 13; 24(8):1232-46. PubMed ID: 25753033
    [Abstract] [Full Text] [Related]

  • 10. Advances in protein complex analysis by chemical cross-linking coupled with mass spectrometry (CXMS) and bioinformatics.
    Tran BQ, Goodlett DR, Goo YA.
    Biochim Biophys Acta; 2016 Jan 13; 1864(1):123-9. PubMed ID: 26025770
    [Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13. Targeted Cross-Linking Mass Spectrometry on Single-Step Affinity Purified Molecular Complexes in the Yeast Saccharomyces cerevisiae.
    Trahan C, Oeffinger M.
    Methods Mol Biol; 2022 Jan 13; 2456():185-210. PubMed ID: 35612743
    [Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16. Comprehensive analysis of diverse ribonucleoprotein complexes.
    Oeffinger M, Wei KE, Rogers R, DeGrasse JA, Chait BT, Aitchison JD, Rout MP.
    Nat Methods; 2007 Nov 13; 4(11):951-6. PubMed ID: 17922018
    [Abstract] [Full Text] [Related]

  • 17. Ribonomic approaches to study the RNA-binding proteome.
    Faoro C, Ataide SF.
    FEBS Lett; 2014 Oct 16; 588(20):3649-64. PubMed ID: 25150170
    [Abstract] [Full Text] [Related]

  • 18. Protein-Protein Interaction Detection Via Mass Spectrometry-Based Proteomics.
    Turriziani B, von Kriegsheim A, Pennington SR.
    Adv Exp Med Biol; 2016 Oct 16; 919():383-396. PubMed ID: 27975227
    [Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20. Mapping protein receptor-ligand interactions via in vivo chemical crosslinking, affinity purification, and differential mass spectrometry.
    Kim KM, Yi EC, Kim Y.
    Methods; 2012 Feb 16; 56(2):161-5. PubMed ID: 22062956
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 21.