These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
111 related items for PubMed ID: 26662390
1. Selection of cowpea progenies with enhanced drought-tolerance traits using principal component analysis. Sousa CC, Damasceno-Silva KJ, Bastos EA, Rocha MM. Genet Mol Res; 2015 Dec 07; 14(4):15981-7. PubMed ID: 26662390 [Abstract] [Full Text] [Related]
2. Restriction of transpiration rate under high vapour pressure deficit and non-limiting water conditions is important for terminal drought tolerance in cowpea. Belko N, Zaman-Allah M, Diop NN, Cisse N, Zombre G, Ehlers JD, Vadez V. Plant Biol (Stuttg); 2013 Mar 07; 15(2):304-16. PubMed ID: 22823007 [Abstract] [Full Text] [Related]
3. Regulation of photosynthesis, fluorescence, stomatal conductance and water-use efficiency of cowpea (Vigna unguiculata [L.] Walp.) under drought. Singh SK, Raja Reddy K. J Photochem Photobiol B; 2011 Oct 05; 105(1):40-50. PubMed ID: 21820316 [Abstract] [Full Text] [Related]
4. Assessing the genetic diversity of cowpea [Vigna unguiculata (L.) Walp.] germplasm collections using phenotypic traits and SNP markers. Nkhoma N, Shimelis H, Laing MD, Shayanowako A, Mathew I. BMC Genet; 2020 Sep 18; 21(1):110. PubMed ID: 32948123 [Abstract] [Full Text] [Related]
5. Genomic regions, cellular components and gene regulatory basis underlying pod length variations in cowpea (V. unguiculata L. Walp). Xu P, Wu X, Muñoz-Amatriaín M, Wang B, Wu X, Hu Y, Huynh BL, Close TJ, Roberts PA, Zhou W, Lu Z, Li G. Plant Biotechnol J; 2017 May 18; 15(5):547-557. PubMed ID: 27658053 [Abstract] [Full Text] [Related]
6. Diallelic analysis to obtain cowpea (Vigna unguiculata L. Walp.) populations tolerant to water deficit. Rodrigues EV, Damasceno-Silva KJ, Rocha MM, Bastos EA. Genet Mol Res; 2016 May 13; 15(2):. PubMed ID: 27323025 [Abstract] [Full Text] [Related]
7. Identifying critical growth stage and resilient genotypes in cowpea under drought stress contributes to enhancing crop tolerance for improvement and adaptation in Cameroon. Ngompe Deffo T, Kouam EB, Mandou MS, Bara RA, Chotangui AH, Souleymanou A, Beyegue Djonko H, Tankou CM. PLoS One; 2024 May 13; 19(6):e0304674. PubMed ID: 38941312 [Abstract] [Full Text] [Related]
9. Mapping QTL for drought stress-induced premature senescence and maturity in cowpea [Vigna unguiculata (L.) Walp.]. Muchero W, Ehlers JD, Close TJ, Roberts PA. Theor Appl Genet; 2009 Mar 13; 118(5):849-63. PubMed ID: 19130034 [Abstract] [Full Text] [Related]
10. Production of intraspecific F1 hybrids between wild and cultivated accessions of cowpea (Vigna unguiculata (L.) walp.) using conventional methods. Lelou B, Van Damme P. Commun Agric Appl Biol Sci; 2006 Mar 13; 71(4):57-75. PubMed ID: 17612353 [Abstract] [Full Text] [Related]
11. Assessing genotypic variability of cowpea (Vigna unguiculata [L.] Walp.) to current and projected ultraviolet-B radiation. Singh SK, Surabhi GK, Gao W, Reddy KR. J Photochem Photobiol B; 2008 Nov 13; 93(2):71-81. PubMed ID: 18723366 [Abstract] [Full Text] [Related]
12. Genetic parameters and path analysis in cowpea genotypes grown in the Cerrado/Pantanal ecotone. Lopes KV, Teodoro PE, Silva FA, Silva MT, Fernandes RL, Rodrigues TC, Faria TC, Corrêa AM. Genet Mol Res; 2017 May 18; 16(2):. PubMed ID: 28525655 [Abstract] [Full Text] [Related]
13. Estimates of genotypic and phenotypic variance, heritability, and genetic advance of horticultural traits in developed crosses of cowpea (Vigna unguiculata [L.] Walp). Zaki HEM, Radwan KSA. Front Plant Sci; 2022 May 18; 13():987985. PubMed ID: 36237497 [Abstract] [Full Text] [Related]
14. Phenotypic description of elite cowpea (Vigna ungiculata L. Walp) genotypes grown in drought-prone environments using agronomic traits. Gerrano AS, Thungo ZG, Mavengahama S. Heliyon; 2022 Feb 18; 8(2):e08855. PubMed ID: 35146164 [Abstract] [Full Text] [Related]
15. Genetic divergence among African cowpea lines based on morphoagronomic traits. Costa EM, Damasceno-Silva KJ, Rocha MM, Medeiros AM, Anunciação Filho CJ. Genet Mol Res; 2013 Dec 16; 12(4):6773-81. PubMed ID: 24391025 [Abstract] [Full Text] [Related]
16. Identification of Candidate Genes Controlling Black Seed Coat and Pod Tip Color in Cowpea (Vigna unguiculata [L.] Walp). Herniter IA, Muñoz-Amatriaín M, Lo S, Guo YN, Close TJ. G3 (Bethesda); 2018 Oct 03; 8(10):3347-3355. PubMed ID: 30143525 [Abstract] [Full Text] [Related]
17. Diallel analysis of cowpea (Vigna unguiculata (L.) Walp.) genotypes under water deficit stress. Ezin V, Tossou TAW, Chabi IB, Ahanchede A. BMC Plant Biol; 2023 Nov 03; 23(1):539. PubMed ID: 37923986 [Abstract] [Full Text] [Related]
18. Diallel Analysis and Heritability of Grain Yield, Yield Components, and Maturity Traits in Cowpea (Vigna unguiculata (L.) Walp.). Owusu EY, Mohammed H, Manigben KA, Adjebeng-Danquah J, Kusi F, Karikari B, Sie EK. ScientificWorldJournal; 2020 Nov 03; 2020():9390287. PubMed ID: 32802007 [Abstract] [Full Text] [Related]
20. An evaluation on intensity of infection of Pseudocercospora leaf spot disease of cowpea cultivars (Vigna unguiculata L. Walp), with respect to infector rows, dates of inoculation and cultivars, grown under field conditions in Northeast Thailand. Sinsiri N, Laohasiriwong S. Pak J Biol Sci; 2008 Apr 15; 11(8):1107-13. PubMed ID: 18819548 [Abstract] [Full Text] [Related] Page: [Next] [New Search]