These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
830 related items for PubMed ID: 26686663
1. Efficient mucus permeation and tight junction opening by dissociable "mucus-inert" agent coated trimethyl chitosan nanoparticles for oral insulin delivery. Liu M, Zhang J, Zhu X, Shan W, Li L, Zhong J, Zhang Z, Huang Y. J Control Release; 2016 Jan 28; 222():67-77. PubMed ID: 26686663 [Abstract] [Full Text] [Related]
2. Overcoming the diffusion barrier of mucus and absorption barrier of epithelium by self-assembled nanoparticles for oral delivery of insulin. Shan W, Zhu X, Liu M, Li L, Zhong J, Sun W, Zhang Z, Huang Y. ACS Nano; 2015 Mar 24; 9(3):2345-56. PubMed ID: 25658958 [Abstract] [Full Text] [Related]
3. N-trimethyl chitosan chloride-coated PLGA nanoparticles overcoming multiple barriers to oral insulin absorption. Sheng J, Han L, Qin J, Ru G, Li R, Wu L, Cui D, Yang P, He Y, Wang J. ACS Appl Mater Interfaces; 2015 Jul 22; 7(28):15430-41. PubMed ID: 26111015 [Abstract] [Full Text] [Related]
4. Enhancing insulin oral absorption by using mucoadhesive nanoparticles loaded with LMWP-linked insulin conjugates. Sheng J, He H, Han L, Qin J, Chen S, Ru G, Li R, Yang P, Wang J, Yang VC. J Control Release; 2016 Jul 10; 233():181-90. PubMed ID: 27178809 [Abstract] [Full Text] [Related]
5. Thiolated Nanoparticles Overcome the Mucus Barrier and Epithelial Barrier for Oral Delivery of Insulin. Zhou S, Deng H, Zhang Y, Wu P, He B, Dai W, Zhang H, Zhang Q, Zhao R, Wang X. Mol Pharm; 2020 Jan 06; 17(1):239-250. PubMed ID: 31800258 [Abstract] [Full Text] [Related]
6. Lipid nanovehicles with adjustable surface properties for overcoming multiple barriers simultaneously in oral administration. Wu L, Liu M, Shan W, Cui Y, Zhang Z, Huang Y. Int J Pharm; 2017 Mar 30; 520(1-2):216-227. PubMed ID: 28185960 [Abstract] [Full Text] [Related]
7. Drug permeability and mucoadhesion properties of thiolated trimethyl chitosan nanoparticles in oral insulin delivery. Yin L, Ding J, He C, Cui L, Tang C, Yin C. Biomaterials; 2009 Oct 30; 30(29):5691-700. PubMed ID: 19615735 [Abstract] [Full Text] [Related]
8. Oral insulin delivery, the challenge to increase insulin bioavailability: Influence of surface charge in nanoparticle system. Czuba E, Diop M, Mura C, Schaschkow A, Langlois A, Bietiger W, Neidl R, Virciglio A, Auberval N, Julien-David D, Maillard E, Frere Y, Marchioni E, Pinget M, Sigrist S. Int J Pharm; 2018 May 05; 542(1-2):47-55. PubMed ID: 29501738 [Abstract] [Full Text] [Related]
9. Efficient Peroral Delivery of Insulin via Vitamin B12 Modified Trimethyl Chitosan Nanoparticles. Ke Z, Guo H, Zhu X, Jin Y, Huang Y. J Pharm Pharm Sci; 2015 May 05; 18(2):155-70. PubMed ID: 26158281 [Abstract] [Full Text] [Related]
10. Insulin-loaded nanoparticles based on N-trimethyl chitosan: in vitro (Caco-2 model) and ex vivo (excised rat jejunum, duodenum, and ileum) evaluation of penetration enhancement properties. Sandri G, Bonferoni MC, Rossi S, Ferrari F, Boselli C, Caramella C. AAPS PharmSciTech; 2010 Mar 05; 11(1):362-71. PubMed ID: 20232266 [Abstract] [Full Text] [Related]
14. Goblet cell-targeting nanoparticles for oral insulin delivery and the influence of mucus on insulin transport. Jin Y, Song Y, Zhu X, Zhou D, Chen C, Zhang Z, Huang Y. Biomaterials; 2012 Feb 05; 33(5):1573-82. PubMed ID: 22093292 [Abstract] [Full Text] [Related]
15. In-vitro and in-vivo cytotoxicity and efficacy evaluation of novel glycyl-glycine and alanyl-alanine conjugates of chitosan and trimethyl chitosan nano-particles as carriers for oral insulin delivery. Jafary Omid N, Bahari Javan N, Dehpour AR, Partoazar A, Rafiee Tehrani M, Dorkoosh F. Int J Pharm; 2018 Jan 15; 535(1-2):293-307. PubMed ID: 29138048 [Abstract] [Full Text] [Related]
16. Development of mutlifunctional nanoparticles self-assembled from trimethyl chitosan and fucoidan for enhanced oral delivery of insulin. Tsai LC, Chen CH, Lin CW, Ho YC, Mi FL. Int J Biol Macromol; 2019 Apr 01; 126():141-150. PubMed ID: 30586591 [Abstract] [Full Text] [Related]
17. pH-responsive nanoparticles shelled with chitosan for oral delivery of insulin: from mechanism to therapeutic applications. Sung HW, Sonaje K, Liao ZX, Hsu LW, Chuang EY. Acc Chem Res; 2012 Apr 17; 45(4):619-29. PubMed ID: 22236133 [Abstract] [Full Text] [Related]
18. Mechanism of surface charge triggered intestinal epithelial tight junction opening upon chitosan nanoparticles for insulin oral delivery. Wang J, Kong M, Zhou Z, Yan D, Yu X, Cheng X, Feng C, Liu Y, Chen X. Carbohydr Polym; 2017 Feb 10; 157():596-602. PubMed ID: 27987967 [Abstract] [Full Text] [Related]
19. Oral delivery of peptide drugs using nanoparticles self-assembled by poly(gamma-glutamic acid) and a chitosan derivative functionalized by trimethylation. Mi FL, Wu YY, Lin YH, Sonaje K, Ho YC, Chen CT, Juang JH, Sung HW. Bioconjug Chem; 2008 Jun 10; 19(6):1248-55. PubMed ID: 18517235 [Abstract] [Full Text] [Related]
20. Enhanced Oral Delivery of Protein Drugs Using Zwitterion-Functionalized Nanoparticles to Overcome both the Diffusion and Absorption Barriers. Shan W, Zhu X, Tao W, Cui Y, Liu M, Wu L, Li L, Zheng Y, Huang Y. ACS Appl Mater Interfaces; 2016 Sep 28; 8(38):25444-53. PubMed ID: 27588330 [Abstract] [Full Text] [Related] Page: [Next] [New Search]