These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
745 related items for PubMed ID: 26689894
1. Biomechanics of ramp descent in unilateral trans-tibial amputees: Comparison of a microprocessor controlled foot with conventional ankle-foot mechanisms. Struchkov V, Buckley JG. Clin Biomech (Bristol); 2016 Feb; 32():164-70. PubMed ID: 26689894 [Abstract] [Full Text] [Related]
2. Walking speed related joint kinetic alterations in trans-tibial amputees: impact of hydraulic 'ankle' damping. De Asha AR, Munjal R, Kulkarni J, Buckley JG. J Neuroeng Rehabil; 2013 Oct 17; 10():107. PubMed ID: 24134803 [Abstract] [Full Text] [Related]
3. Gait termination on a declined surface in trans-femoral amputees: Impact of using microprocessor-controlled limb system. Abdulhasan ZM, Scally AJ, Buckley JG. Clin Biomech (Bristol); 2018 Aug 17; 57():35-41. PubMed ID: 29908391 [Abstract] [Full Text] [Related]
4. Impact on the biomechanics of overground gait of using an 'Echelon' hydraulic ankle-foot device in unilateral trans-tibial and trans-femoral amputees. De Asha AR, Munjal R, Kulkarni J, Buckley JG. Clin Biomech (Bristol); 2014 Aug 17; 29(7):728-34. PubMed ID: 24997811 [Abstract] [Full Text] [Related]
5. Benefits of a microprocessor-controlled prosthetic foot for ascending and descending slopes. Ernst M, Altenburg B, Schmalz T, Kannenberg A, Bellmann M. J Neuroeng Rehabil; 2022 Jan 28; 19(1):9. PubMed ID: 35090505 [Abstract] [Full Text] [Related]
6. Subject-specific responses to an adaptive ankle prosthesis during incline walking. Lamers EP, Eveld ME, Zelik KE. J Biomech; 2019 Oct 11; 95():109273. PubMed ID: 31431348 [Abstract] [Full Text] [Related]
7. Lower limb amputee gait characteristics on a specifically designed test ramp: Preliminary results of a biomechanical comparison of two prosthetic foot concepts. Schmalz T, Altenburg B, Ernst M, Bellmann M, Rosenbaum D. Gait Posture; 2019 Feb 11; 68():161-167. PubMed ID: 30497035 [Abstract] [Full Text] [Related]
8. Energy cost of ambulation in trans-tibial amputees using a dynamic-response foot with hydraulic versus rigid 'ankle': insights from body centre of mass dynamics. Askew GN, McFarlane LA, Minetti AE, Buckley JG. J Neuroeng Rehabil; 2019 Mar 14; 16(1):39. PubMed ID: 30871573 [Abstract] [Full Text] [Related]
9. A biomechanical assessment of hydraulic ankle-foot devices with and without micro-processor control during slope ambulation in trans-femoral amputees. Bai X, Ewins D, Crocombe AD, Xu W. PLoS One; 2018 Mar 14; 13(10):e0205093. PubMed ID: 30289921 [Abstract] [Full Text] [Related]
10. Benefits of an increased prosthetic ankle range of motion for individuals with a trans-tibial amputation walking with a new prosthetic foot. Heitzmann DWW, Salami F, De Asha AR, Block J, Putz C, Wolf SI, Alimusaj M. Gait Posture; 2018 Jul 14; 64():174-180. PubMed ID: 29913354 [Abstract] [Full Text] [Related]
11. Assessment of transfemoral amputees using a passive microprocessor-controlled knee versus an active powered microprocessor-controlled knee for level walking. Creylman V, Knippels I, Janssen P, Biesbrouck E, Lechler K, Peeraer L. Biomed Eng Online; 2016 Dec 19; 15(Suppl 3):142. PubMed ID: 28105945 [Abstract] [Full Text] [Related]
12. Attenuation of centre-of-pressure trajectory fluctuations under the prosthetic foot when using an articulating hydraulic ankle attachment compared to fixed attachment. De Asha AR, Johnson L, Munjal R, Kulkarni J, Buckley JG. Clin Biomech (Bristol); 2013 Feb 19; 28(2):218-24. PubMed ID: 23261018 [Abstract] [Full Text] [Related]
13. Powered ankle-foot prosthesis to assist level-ground and stair-descent gaits. Au S, Berniker M, Herr H. Neural Netw; 2008 May 19; 21(4):654-66. PubMed ID: 18499394 [Abstract] [Full Text] [Related]
14. The influence of energy storage and return foot stiffness on walking mechanics and muscle activity in below-knee amputees. Fey NP, Klute GK, Neptune RR. Clin Biomech (Bristol); 2011 Dec 19; 26(10):1025-32. PubMed ID: 21777999 [Abstract] [Full Text] [Related]
15. The influence of a microprocessor-controlled hydraulic ankle on the kinetic symmetry of trans-tibial amputees during ramp walking: A case series. McGrath M, Laszczak P, Zahedi S, Moser D. J Rehabil Assist Technol Eng; 2018 Dec 19; 5():2055668318790650. PubMed ID: 31191949 [Abstract] [Full Text] [Related]
16. Standing on slopes - how current microprocessor-controlled prosthetic feet support transtibial and transfemoral amputees in an everyday task. Ernst M, Altenburg B, Bellmann M, Schmalz T. J Neuroeng Rehabil; 2017 Nov 16; 14(1):117. PubMed ID: 29145876 [Abstract] [Full Text] [Related]
17. Transfemoral amputee intact limb loading and compensatory gait mechanics during down slope ambulation and the effect of prosthetic knee mechanisms. Morgenroth DC, Roland M, Pruziner AL, Czerniecki JM. Clin Biomech (Bristol); 2018 Jun 16; 55():65-72. PubMed ID: 29698851 [Abstract] [Full Text] [Related]
18. Biomechanical analysis of ramp ambulation of transtibial amputees with an adaptive ankle foot system. Fradet L, Alimusaj M, Braatz F, Wolf SI. Gait Posture; 2010 Jun 16; 32(2):191-8. PubMed ID: 20457526 [Abstract] [Full Text] [Related]
19. Comparison of four different categories of prosthetic feet during ramp ambulation in unilateral transtibial amputees. Agrawal V, Gailey RS, Gaunaurd IA, O'Toole C, Finnieston A, Tolchin R. Prosthet Orthot Int; 2015 Oct 16; 39(5):380-9. PubMed ID: 24925671 [Abstract] [Full Text] [Related]
20. Energetic consequences of using a prosthesis with adaptive ankle motion during slope walking in persons with a transtibial amputation. Darter BJ, Wilken JM. Prosthet Orthot Int; 2014 Feb 16; 38(1):5-11. PubMed ID: 23525888 [Abstract] [Full Text] [Related] Page: [Next] [New Search]