These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


745 related items for PubMed ID: 26689894

  • 21. Minimum toe clearance and tripping probability in people with unilateral transtibial amputation walking on ramps with different prosthetic designs.
    Riveras M, Ravera E, Ewins D, Shaheen AF, Catalfamo-Formento P.
    Gait Posture; 2020 Sep; 81():41-48. PubMed ID: 32663775
    [Abstract] [Full Text] [Related]

  • 22.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 23. The effects of walking speed on minimum toe clearance and on the temporal relationship between minimum clearance and peak swing-foot velocity in unilateral trans-tibial amputees.
    De Asha AR, Buckley JG.
    Prosthet Orthot Int; 2015 Apr; 39(2):120-5. PubMed ID: 24469428
    [Abstract] [Full Text] [Related]

  • 24.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 25. Impact of a stance phase microprocessor-controlled knee prosthesis on level walking in lower functioning individuals with a transfemoral amputation.
    Eberly VJ, Mulroy SJ, Gronley JK, Perry J, Yule WJ, Burnfield JM.
    Prosthet Orthot Int; 2014 Dec; 38(6):447-55. PubMed ID: 24135259
    [Abstract] [Full Text] [Related]

  • 26. Co-contraction patterns of trans-tibial amputee ankle and knee musculature during gait.
    Seyedali M, Czerniecki JM, Morgenroth DC, Hahn ME.
    J Neuroeng Rehabil; 2012 May 28; 9():29. PubMed ID: 22640660
    [Abstract] [Full Text] [Related]

  • 27. Biomechanical effects of adding an articulating toe joint to a passive foot prosthesis for incline and decline walking.
    Teater RH, Zelik KE, McDonald KA.
    PLoS One; 2024 May 28; 19(5):e0295465. PubMed ID: 38758923
    [Abstract] [Full Text] [Related]

  • 28. A comparison of two prosthetic feet on the multi-joint and multi-plane kinetic gait compensations in individuals with a unilateral trans-tibial amputation.
    Underwood HA, Tokuno CD, Eng JJ.
    Clin Biomech (Bristol); 2004 Jul 28; 19(6):609-16. PubMed ID: 15234485
    [Abstract] [Full Text] [Related]

  • 29. Frontal plane pelvis and hip kinematics of transfemoral amputee gait. Effect of a prosthetic foot with active ankle dorsiflexion and individualized training - a case study.
    Armannsdottir A, Tranberg R, Halldorsdottir G, Briem K.
    Disabil Rehabil Assist Technol; 2018 May 28; 13(4):388-393. PubMed ID: 28974119
    [Abstract] [Full Text] [Related]

  • 30. Experimental characterization of the moment-angle curve during level and slope locomotion of transtibial amputee: Which parameters can be extracted to quantify the adaptations of microprocessor prosthetic ankle?
    Davot J, Thomas-Pohl M, Villa C, Bonnet X, Lapeyre E, Bascou J, Pillet H.
    Proc Inst Mech Eng H; 2021 Jul 28; 235(7):762-769. PubMed ID: 33784889
    [Abstract] [Full Text] [Related]

  • 31. The effects of a controlled energy storage and return prototype prosthetic foot on transtibial amputee ambulation.
    Segal AD, Zelik KE, Klute GK, Morgenroth DC, Hahn ME, Orendurff MS, Adamczyk PG, Collins SH, Kuo AD, Czerniecki JM.
    Hum Mov Sci; 2012 Aug 28; 31(4):918-31. PubMed ID: 22100728
    [Abstract] [Full Text] [Related]

  • 32. Gait patterns of transtibial amputee patients walking indoors barefoot.
    Han TR, Chung SG, Shin HI.
    Am J Phys Med Rehabil; 2003 Feb 28; 82(2):96-100. PubMed ID: 12544754
    [Abstract] [Full Text] [Related]

  • 33. Impact of stance phase microprocessor-controlled knee prosthesis on ramp negotiation and community walking function in K2 level transfemoral amputees.
    Burnfield JM, Eberly VJ, Gronely JK, Perry J, Yule WJ, Mulroy SJ.
    Prosthet Orthot Int; 2012 Mar 28; 36(1):95-104. PubMed ID: 22223685
    [Abstract] [Full Text] [Related]

  • 34. Kinematic and biomimetic assessment of a hydraulic ankle/foot in level ground and camber walking.
    Bai X, Ewins D, Crocombe AD, Xu W.
    PLoS One; 2017 Mar 28; 12(7):e0180836. PubMed ID: 28704428
    [Abstract] [Full Text] [Related]

  • 35. A methodology for studying the effects of various types of prosthetic feet on the biomechanics of trans-femoral amputee gait.
    van der Linden ML, Solomonidis SE, Spence WD, Li N, Paul JP.
    J Biomech; 1999 Sep 28; 32(9):877-89. PubMed ID: 10460124
    [Abstract] [Full Text] [Related]

  • 36. Effects of a powered ankle-foot prosthesis on kinetic loading of the contralateral limb: a case series.
    Hill D, Herr H.
    IEEE Int Conf Rehabil Robot; 2013 Jun 28; 2013():6650375. PubMed ID: 24187194
    [Abstract] [Full Text] [Related]

  • 37. Assessing the Relative Contributions of Active Ankle and Knee Assistance to the Walking Mechanics of Transfemoral Amputees Using a Powered Prosthesis.
    Ingraham KA, Fey NP, Simon AM, Hargrove LJ.
    PLoS One; 2016 Jun 28; 11(1):e0147661. PubMed ID: 26807889
    [Abstract] [Full Text] [Related]

  • 38. The comparison of transfemoral amputees using mechanical and microprocessor- controlled prosthetic knee under different walking speeds: A randomized cross-over trial.
    Cao W, Yu H, Zhao W, Meng Q, Chen W.
    Technol Health Care; 2018 Jun 28; 26(4):581-592. PubMed ID: 29710741
    [Abstract] [Full Text] [Related]

  • 39. Long-distance walking effects on trans-tibial amputees compensatory gait patterns and implications on prosthetic designs and training.
    Yeung LF, Leung AK, Zhang M, Lee WC.
    Gait Posture; 2012 Feb 28; 35(2):328-33. PubMed ID: 22055554
    [Abstract] [Full Text] [Related]

  • 40. Evaluation of a Powered Ankle-Foot Prosthesis during Slope Ascent Gait.
    Rábago CA, Aldridge Whitehead J, Wilken JM.
    PLoS One; 2016 Feb 28; 11(12):e0166815. PubMed ID: 27977681
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 38.