These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


150 related items for PubMed ID: 26693660

  • 1.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7. Carbohydrate composition of compost during composting and mycelium growth of Agaricus bisporus.
    Jurak E, Kabel MA, Gruppen H.
    Carbohydr Polym; 2014 Jan 30; 101():281-8. PubMed ID: 24299775
    [Abstract] [Full Text] [Related]

  • 8. Anaerobically digested food waste in compost for Agaricus bisporus and Agaricus subrufescens and its effect on mushroom productivity.
    Stoknes K, Beyer DM, Norgaard E.
    J Sci Food Agric; 2013 Jul 30; 93(9):2188-200. PubMed ID: 23371778
    [Abstract] [Full Text] [Related]

  • 9. Fate of Carbohydrates and Lignin during Composting and Mycelium Growth of Agaricus bisporus on Wheat Straw Based Compost.
    Jurak E, Punt AM, Arts W, Kabel MA, Gruppen H.
    PLoS One; 2015 Jul 30; 10(10):e0138909. PubMed ID: 26436656
    [Abstract] [Full Text] [Related]

  • 10. The physical structure of compost and C and N utilization during composting and mushroom growth in Agaricus bisporus cultivation with rice, wheat, and reed straw-based composts.
    Wang Q, Juan J, Xiao T, Zhang J, Chen H, Song X, Chen M, Huang J.
    Appl Microbiol Biotechnol; 2021 May 30; 105(9):3811-3823. PubMed ID: 33877414
    [Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14. Diversity and dynamics of the DNA- and cDNA-derived compost fungal communities throughout the commercial cultivation process for Agaricus bisporus.
    McGee CF, Byrne H, Irvine A, Wilson J.
    Mycologia; 2017 May 30; 109(3):475-484. PubMed ID: 28759322
    [Abstract] [Full Text] [Related]

  • 15. Dynamics of the chemical composition and productivity of composts for the cultivation of Agaricus bisporus strains.
    de Andrade MC, de Jesus JP, Vieira FR, Viana SR, Spoto MH, de Almeida Minhoni MT.
    Braz J Microbiol; 2013 Dec 30; 44(4):1139-46. PubMed ID: 24688503
    [Abstract] [Full Text] [Related]

  • 16. Physiologic response of Agaricus subrufescens using different casing materials and practices applied in the cultivation of Agaricus bisporus.
    Dias ES, Zied DC, Rinker DL.
    Fungal Biol; 2013 Dec 30; 117(7-8):569-75. PubMed ID: 23931122
    [Abstract] [Full Text] [Related]

  • 17. Impact of a native Streptomyces flavovirens from mushroom compost on green mold control and yield of Agaricus bisporus.
    Šantrić L, Potočnik I, Radivojević L, Umiljendić JG, Rekanović E, Duduk B, Milijašević-Marčić S.
    J Environ Sci Health B; 2018 Dec 30; 53(10):677-684. PubMed ID: 29775426
    [Abstract] [Full Text] [Related]

  • 18. Compost Grown Agaricus bisporus Lacks the Ability to Degrade and Consume Highly Substituted Xylan Fragments.
    Jurak E, Patyshakuliyeva A, de Vries RP, Gruppen H, Kabel MA.
    PLoS One; 2015 Dec 30; 10(8):e0134169. PubMed ID: 26237450
    [Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 8.