These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
117 related items for PubMed ID: 2669526
41. Increased renal epithelial na channel expression and activity correlate with elevation of blood pressure in spontaneously hypertensive rats. Haloui M, Tremblay J, Seda O, Koltsova SV, Maksimov GV, Orlov SN, Hamet P. Hypertension; 2013 Oct; 62(4):731-7. PubMed ID: 23959560 [Abstract] [Full Text] [Related]
42. Does endothelin work as an intrarenal mechanism to alter pressure natriuresis in spontaneously hypertensive rats? Hirata Y, Hayakawa H, Suzuki E, Omata M. J Hypertens; 1994 Mar; 12(3):251-7. PubMed ID: 8021478 [Abstract] [Full Text] [Related]
43. beta-Adrenoceptor modulation of renin response to short-term reductions in pressure in young SHR. Porter JP. Am J Physiol; 1992 Aug; 263(2 Pt 2):R405-11. PubMed ID: 1324618 [Abstract] [Full Text] [Related]
44. Dde I restriction fragment length polymorphism of the alpha 2-adrenoceptor gene does not correlate with blood pressure in the F2 generation obtained from crossing stroke-prone spontaneously hypertensive rats and Wistar-Kyoto rats. Kobayashi S, Umemura S, Hirawa N, Iwamoto T, Yamaguchi S, Tamura K, Takasaki I, Ishii M. J Hypertens; 1994 Mar; 12(3):235-8. PubMed ID: 7912704 [Abstract] [Full Text] [Related]
45. Effects of prorenin on blood pressure and plasma renin concentrations in stroke-prone spontaneously hypertensive rats. Hosoi M, Kim S, Takada T, Suzuki F, Murakami K, Yamamoto K. Am J Physiol; 1992 Feb; 262(2 Pt 1):E234-9. PubMed ID: 1539651 [Abstract] [Full Text] [Related]
46. Angiotensin II-induced changes in G-protein expression and resistance of renal microvessels in young genetically hypertensive rats. Vyas SJ, Blaschak CM, Chinoy MR, Jackson EK. Mol Cell Biochem; 2000 Sep; 212(1-2):121-9. PubMed ID: 11108143 [Abstract] [Full Text] [Related]
47. Cellular distribution of the renal bumetanide-sensitive Na-K-2Cl cotransporter BSC-1 in the inner stripe of the outer medulla during the development of hypertension in the spontaneously hypertensive rat. Sonalker PA, Tofovic SP, Jackson EK. Clin Exp Pharmacol Physiol; 2007 Dec; 34(12):1307-12. PubMed ID: 17973873 [Abstract] [Full Text] [Related]
48. Interaction between chromosome 2 and 3 regulates pulse pressure in the stroke-prone spontaneously hypertensive rat. Koh-Tan HH, McBride MW, McClure JD, Beattie E, Young B, Dominiczak AF, Graham D. Hypertension; 2013 Jul; 62(1):33-40. PubMed ID: 23648703 [Abstract] [Full Text] [Related]
49. The importance of the kidney in primary hypertension: insights from cross-transplantation. Rettig R, Bandelow N, Patschan O, Kuttler B, Frey B, Uber A. J Hum Hypertens; 1996 Oct; 10(10):641-4. PubMed ID: 9004087 [Abstract] [Full Text] [Related]
50. Low concentrations of angiotensin II unmask vasoconstrictory alpha 2-adrenoceptors in isolated perfused kidneys of spontaneously hypertensive rats. Bohmann C, Rist W, Schollmeyer P, Rump LC. Cardiovasc Res; 1995 Dec; 30(6):857-65. PubMed ID: 8746199 [Abstract] [Full Text] [Related]
51. Function and expression of endothelin receptor subtypes in the kidneys of spontaneously hypertensive rats. Hocher B, Rohmeiss P, Zart R, Diekmann F, Vogt V, Metz D, Fakhury M, Gretz N, Bauer C, Koppenhagen K, Neumayer HH, Distler A. Cardiovasc Res; 1996 Apr; 31(4):499-510. PubMed ID: 8689641 [Abstract] [Full Text] [Related]
52. Characterization of renal aldosterone receptors in genetically hypertensive rats. Horiuchi M, Nishiyama H, Hama J, Takenaka T, Kondo H, Kino H, Nagata S, Sugimura K, Katori R. Am J Physiol; 1993 Feb; 264(2 Pt 2):F286-91. PubMed ID: 8447438 [Abstract] [Full Text] [Related]
53. Renal function in stroke-prone rats fed a high-K+ diet. Smeda JS. Can J Physiol Pharmacol; 1997 Jul; 75(7):796-806. PubMed ID: 9315346 [Abstract] [Full Text] [Related]
54. Decreased monoamine oxidase activity in stroke-prone spontaneously hypertensive rat kidneys. Senjo M, Yamazaki N, Minami M, Hirokami M, Saito H, Parvez H. Res Commun Chem Pathol Pharmacol; 1986 May; 52(2):207-16. PubMed ID: 3086955 [Abstract] [Full Text] [Related]
55. Ameliorative effects of docosahexaenoic acid on serum lipid changes in stroke-prone spontaneously hypertensive rats. Kimura S, Minami M, Hata N, Saito H. Res Commun Mol Pathol Pharmacol; 1998 Apr; 100(1):53-64. PubMed ID: 9644719 [Abstract] [Full Text] [Related]
56. Adaptation to sodium restriction in renin-immunized spontaneously hypertensive and normotensive rats. Jover B, Michel JB, Dupont M, Corvol P, Mimran A. Am J Physiol; 1992 Jan; 262(1 Pt 2):H215-9. PubMed ID: 1733312 [Abstract] [Full Text] [Related]
57. Angiotensin converting activity assessed in vivo is increased in hereditary hypertensive rats. Krieger EM, Yamori Y, Lovenberg WM. Braz J Med Biol Res; 1992 Jan; 25(12):1215-22. PubMed ID: 1341916 [Abstract] [Full Text] [Related]
58. Renal hemodynamics during development of hypertension in young spontaneously hypertensive rats. Christiansen RE, Roald AB, Tenstad O, Iversen BM. Kidney Blood Press Res; 2002 Jan; 25(5):322-8. PubMed ID: 12435879 [Abstract] [Full Text] [Related]
59. Neuropeptide abnormalities suggest a dopaminergic basis for high blood pressure in the spontaneously hypertensive rat. Hutchinson JS, Mok JS. Clin Exp Hypertens A; 1984 Jan; 6(10-11):2055-8. PubMed ID: 6099777 [Abstract] [Full Text] [Related]
60. The effect of a reduced sodium intake on post-renal transplantation hypertension in rats. De Keijzer MH, Provoost AP, Wolff ED, Kort WJ, Weijma IM, Van Aken M, Molenaar JC. Clin Sci (Lond); 1984 Mar; 66(3):269-76. PubMed ID: 6362959 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]