These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


344 related items for PubMed ID: 26703122

  • 1. Electrical stimulation of adipose-derived mesenchymal stem cells in conductive scaffolds and the roles of voltage-gated ion channels.
    Zhang J, Li M, Kang ET, Neoh KG.
    Acta Biomater; 2016 Mar 01; 32():46-56. PubMed ID: 26703122
    [Abstract] [Full Text] [Related]

  • 2. Electrical stimulation of adipose-derived mesenchymal stem cells and endothelial cells co-cultured in a conductive scaffold for potential orthopaedic applications.
    Zhang J, Neoh KG, Kang ET.
    J Tissue Eng Regen Med; 2018 Apr 01; 12(4):878-889. PubMed ID: 28482125
    [Abstract] [Full Text] [Related]

  • 3. Novel polypyrrole-coated polylactide scaffolds enhance adipose stem cell proliferation and early osteogenic differentiation.
    Pelto J, Björninen M, Pälli A, Talvitie E, Hyttinen J, Mannerström B, Suuronen Seppanen R, Kellomäki M, Miettinen S, Haimi S.
    Tissue Eng Part A; 2013 Apr 01; 19(7-8):882-92. PubMed ID: 23126228
    [Abstract] [Full Text] [Related]

  • 4. In-situ polymerized polypyrrole nanoparticles immobilized poly(ε-caprolactone) electrospun conductive scaffolds for bone tissue engineering.
    Maharjan B, Kaliannagounder VK, Jang SR, Awasthi GP, Bhattarai DP, Choukrani G, Park CH, Kim CS.
    Mater Sci Eng C Mater Biol Appl; 2020 Sep 01; 114():111056. PubMed ID: 32994008
    [Abstract] [Full Text] [Related]

  • 5. 3D-Printed Demineralized Bone Matrix-Based Conductive Scaffolds Combined with Electrical Stimulation for Bone Tissue Engineering Applications.
    Dixon DT, Landree EN, Gomillion CT.
    ACS Appl Bio Mater; 2024 Jul 15; 7(7):4366-4378. PubMed ID: 38905196
    [Abstract] [Full Text] [Related]

  • 6. Three-dimensional-printed polycaprolactone/polypyrrole conducting scaffolds for differentiation of human olfactory ecto-mesenchymal stem cells into Schwann cell-like phenotypes and promotion of neurite outgrowth.
    Entezari M, Mozafari M, Bakhtiyari M, Moradi F, Bagher Z, Soleimani M.
    J Biomed Mater Res A; 2022 May 15; 110(5):1134-1146. PubMed ID: 35075781
    [Abstract] [Full Text] [Related]

  • 7. Three-dimensional printed polycaprolactone-based scaffolds provide an advantageous environment for osteogenic differentiation of human adipose-derived stem cells.
    Rumiński S, Ostrowska B, Jaroszewicz J, Skirecki T, Włodarski K, Święszkowski W, Lewandowska-Szumieł M.
    J Tissue Eng Regen Med; 2018 Jan 15; 12(1):e473-e485. PubMed ID: 27599449
    [Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10. Development of Anisotropic Electrically Conductive GNP-Reinforced PCL-Collagen Scaffold for Enhanced Neurogenic Differentiation under Electrical Stimulation.
    Ghosh S, Roy P, Lahiri D.
    Chem Asian J; 2024 May 02; 19(9):e202400061. PubMed ID: 38547362
    [Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12. Electrically Stimulated Adipose Stem Cells on Polypyrrole-Coated Scaffolds for Smooth Muscle Tissue Engineering.
    Björninen M, Gilmore K, Pelto J, Seppänen-Kaijansinkko R, Kellomäki M, Miettinen S, Wallace G, Grijpma D, Haimi S.
    Ann Biomed Eng; 2017 Apr 02; 45(4):1015-1026. PubMed ID: 27844175
    [Abstract] [Full Text] [Related]

  • 13. Electrical stimulation enhances the neuronal differentiation of neural stem cells in three-dimensional conductive scaffolds through the voltage-gated calcium ion channel.
    Wang S, Guan S, Sun C, Liu H, Liu T, Ma X.
    Brain Res; 2023 Jan 01; 1798():148163. PubMed ID: 36379314
    [Abstract] [Full Text] [Related]

  • 14. Roles of electrical stimulation in promoting osteogenic differentiation of BMSCs on conductive fibers.
    Jing W, Huang Y, Wei P, Cai Q, Yang X, Zhong W.
    J Biomed Mater Res A; 2019 Jul 01; 107(7):1443-1454. PubMed ID: 30786145
    [Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17. Bioinspired Nanofiber Scaffold for Differentiating Bone Marrow-Derived Neural Stem Cells to Oligodendrocyte-Like Cells: Design, Fabrication, and Characterization.
    Rasti Boroojeni F, Mashayekhan S, Abbaszadeh HA, Ansarizadeh M, Khoramgah MS, Rahimi Movaghar V.
    Int J Nanomedicine; 2020 Jul 01; 15():3903-3920. PubMed ID: 32606657
    [Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19. Polycaprolactone fibrous electrospun scaffolds reinforced with copper doped wollastonite for bone tissue engineering applications.
    Abudhahir M, Saleem A, Paramita P, Kumar SD, Tze-Wen C, Selvamurugan N, Moorthi A.
    J Biomed Mater Res B Appl Biomater; 2021 May 01; 109(5):654-664. PubMed ID: 32935919
    [Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 18.