These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. The biocompatibility of calcium phosphate cements containing alendronate-loaded PLGA microparticles in vitro. Li YH, Wang ZD, Wang W, Ding CW, Zhang HX, Li JM. Exp Biol Med (Maywood); 2015 Nov; 240(11):1465-71. PubMed ID: 25877763 [Abstract] [Full Text] [Related]
5. In vitro degradation, biocompatibility, and in vivo osteogenesis of poly(lactic-co-glycolic acid)/calcium phosphate cement scaffold with unidirectional lamellar pore structure. He F, Ye J. J Biomed Mater Res A; 2012 Dec; 100(12):3239-50. PubMed ID: 22733543 [Abstract] [Full Text] [Related]
6. Efficacy of the biomaterials 3wt%-nanostrontium-hydroxyapatite-enhanced calcium phosphate cement (nanoSr-CPC) and nanoSr-CPC-incorporated simvastatin-loaded poly(lactic-co-glycolic-acid) microspheres in osteogenesis improvement: An explorative multi-phase experimental in vitro/vivo study. Masaeli R, Jafarzadeh Kashi TS, Dinarvand R, Rakhshan V, Shahoon H, Hooshmand B, Mashhadi Abbas F, Raz M, Rajabnejad A, Eslami H, Khoshroo K, Tahriri M, Tayebi L. Mater Sci Eng C Mater Biol Appl; 2016 Dec 01; 69():171-83. PubMed ID: 27612702 [Abstract] [Full Text] [Related]
10. Influence of VEGF/BMP-2 on the proliferation and osteogenetic differentiation of rat bone mesenchymal stem cells on PLGA/gelatin composite scaffold. An G, Zhang WB, Ma DK, Lu B, Wei GJ, Guang Y, Ru CH, Wang YS. Eur Rev Med Pharmacol Sci; 2017 May 01; 21(10):2316-2328. PubMed ID: 28617560 [Abstract] [Full Text] [Related]
12. Effects of Nano-hydroxyapatite/Poly(DL-lactic-co-glycolic acid) Microsphere-Based Composite Scaffolds on Repair of Bone Defects: Evaluating the Role of Nano-hydroxyapatite Content. He S, Lin KF, Sun Z, Song Y, Zhao YN, Wang Z, Bi L, Liu J. Artif Organs; 2016 Jul 01; 40(7):E128-35. PubMed ID: 27378617 [Abstract] [Full Text] [Related]
13. Effects of VEGF loading on scaffold-confined vascularization. Lindhorst D, Tavassol F, von See C, Schumann P, Laschke MW, Harder Y, Bormann KH, Essig H, Kokemüller H, Kampmann A, Voss A, Mülhaupt R, Menger MD, Gellrich NC, Rücker M. J Biomed Mater Res A; 2010 Dec 01; 95(3):783-92. PubMed ID: 20725981 [Abstract] [Full Text] [Related]
15. Physicomechanical properties of sintered scaffolds formed from porous and protein-loaded poly(DL-lactic-co-glycolic acid) microspheres for potential use in bone tissue engineering. Boukari Y, Scurr DJ, Qutachi O, Morris AP, Doughty SW, Rahman CV, Billa N. J Biomater Sci Polym Ed; 2015 Dec 01; 26(12):796-811. PubMed ID: 26065672 [Abstract] [Full Text] [Related]
16. Bone augmentation using a highly porous PLGA/β-TCP scaffold containing fibroblast growth factor-2. Yoshida T, Miyaji H, Otani K, Inoue K, Nakane K, Nishimura H, Ibara A, Shimada A, Ogawa K, Nishida E, Sugaya T, Sun L, Fugetsu B, Kawanami M. J Periodontal Res; 2015 Apr 01; 50(2):265-73. PubMed ID: 24966062 [Abstract] [Full Text] [Related]
17. In vivo osteogenic response to different ratios of BMP-2 and VEGF released from a biodegradable porous system. Hernández A, Reyes R, Sánchez E, Rodríguez-Évora M, Delgado A, Evora C. J Biomed Mater Res A; 2012 Sep 01; 100(9):2382-91. PubMed ID: 22528545 [Abstract] [Full Text] [Related]
19. Development of PLGA-coated β-TCP scaffolds containing VEGF for bone tissue engineering. Khojasteh A, Fahimipour F, Eslaminejad MB, Jafarian M, Jahangir S, Bastami F, Tahriri M, Karkhaneh A, Tayebi L. Mater Sci Eng C Mater Biol Appl; 2016 Dec 01; 69():780-8. PubMed ID: 27612772 [Abstract] [Full Text] [Related]