These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


129 related items for PubMed ID: 2671293

  • 1.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 2. Removal of the basal lamina in vivo reveals growth cone-basal lamina adhesive interactions and axonal tension in grasshopper embryos.
    Condic ML, Bentley D.
    J Neurosci; 1989 Aug; 9(8):2678-86. PubMed ID: 2671292
    [Abstract] [Full Text] [Related]

  • 3. Pioneer neuron pathfinding from normal and ectopic locations in vivo after removal of the basal lamina.
    Condic ML, Bentley D.
    Neuron; 1989 Oct; 3(4):427-39. PubMed ID: 2642004
    [Abstract] [Full Text] [Related]

  • 4. Pioneer growth cone morphologies reveal proximal increases in substrate affinity within leg segments of grasshopper embryos.
    Caudy M, Bentley D.
    J Neurosci; 1986 Feb; 6(2):364-79. PubMed ID: 3950702
    [Abstract] [Full Text] [Related]

  • 5. The permissive cue laminin is essential for growth cone turning in vivo.
    Bonner J, O'Connor TP.
    J Neurosci; 2001 Dec 15; 21(24):9782-91. PubMed ID: 11739586
    [Abstract] [Full Text] [Related]

  • 6. Pioneer growth cone steering decisions mediated by single filopodial contacts in situ.
    O'Connor TP, Duerr JS, Bentley D.
    J Neurosci; 1990 Dec 15; 10(12):3935-46. PubMed ID: 2269892
    [Abstract] [Full Text] [Related]

  • 7. Pioneer growth cone behavior at a differentiating limb segment boundary in the grasshopper embryo.
    Caudy M, Bentley D.
    Dev Biol; 1987 Feb 15; 119(2):454-65. PubMed ID: 3542636
    [Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10. Pioneer neurones use basal lamina as a substratum for outgrowth in the embryonic grasshopper limb.
    Anderson H, Tucker RP.
    Development; 1988 Dec 15; 104(4):601-8. PubMed ID: 3268405
    [Abstract] [Full Text] [Related]

  • 11. Calcium ion distribution in nascent pioneer axons and coupled preaxonogenesis neurons in situ.
    Bentley D, Guthrie PB, Kater SB.
    J Neurosci; 1991 May 15; 11(5):1300-8. PubMed ID: 2027049
    [Abstract] [Full Text] [Related]

  • 12. A paradoxical gradient of a basal lamina-associated repellent is essential for pathfinding by the Ti1 pioneer axons in cockroach embryos.
    Nyhus JK, Denburg JL.
    Mol Cell Neurosci; 2000 Oct 15; 16(4):481-98. PubMed ID: 11085883
    [Abstract] [Full Text] [Related]

  • 13. Spatial and temporal variation in the structure of the basal lamina in embryonic grasshopper limbs during pioneer neurone outgrowth.
    Anderson H, Tucker RP.
    Development; 1989 May 15; 106(1):185-94. PubMed ID: 2627885
    [Abstract] [Full Text] [Related]

  • 14. Embryogenesis of peripheral nerve pathways in grasshopper legs. I. The initial nerve pathway to the CNS.
    Keshishian H, Bentley D.
    Dev Biol; 1983 Mar 15; 96(1):89-102. PubMed ID: 6825962
    [Abstract] [Full Text] [Related]

  • 15. Transient pioneer neurons are essential for formation of an embryonic peripheral nerve.
    Klose M, Bentley D.
    Science; 1989 Sep 01; 245(4921):982-4. PubMed ID: 2772651
    [Abstract] [Full Text] [Related]

  • 16. Navigational substrates for peripheral pioneer growth cones: limb-axis polarity cues, limb-segment boundaries, and guidepost neurons.
    Bentley D, Caudy M.
    Cold Spring Harb Symp Quant Biol; 1983 Sep 01; 48 Pt 2():573-85. PubMed ID: 6586376
    [No Abstract] [Full Text] [Related]

  • 17. Disruption of pioneer growth cone guidance in vivo by removal of glycosyl-phosphatidylinositol-anchored cell surface proteins.
    Chang WS, Serikawa K, Allen K, Bentley D.
    Development; 1992 Feb 01; 114(2):507-19. PubMed ID: 1317292
    [Abstract] [Full Text] [Related]

  • 18. Programmed death of peripheral pioneer neurons in the grasshopper embryo.
    Kutsch W, Bentley D.
    Dev Biol; 1987 Oct 01; 123(2):517-25. PubMed ID: 3653522
    [Abstract] [Full Text] [Related]

  • 19. Gradient steepness influences the pathfinding decisions of neuronal growth cones in vivo.
    Isbister CM, Mackenzie PJ, To KC, O'Connor TP.
    J Neurosci; 2003 Jan 01; 23(1):193-202. PubMed ID: 12514216
    [Abstract] [Full Text] [Related]

  • 20. Disoriented pathfinding by pioneer neurone growth cones deprived of filopodia by cytochalasin treatment.
    Bentley D, Toroian-Raymond A.
    Nature; 2003 Jan 01; 323(6090):712-5. PubMed ID: 3773996
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 7.