These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
148 related items for PubMed ID: 26713534
1. [Expression of plateau adaptation gene of rat tissues after plain acute exposure to high altitude]. Xie H, Hao Y, Yin Q, Li WB, Lu H, Jia ZP, Wang R. Zhejiang Da Xue Xue Bao Yi Xue Ban; 2015 Sep; 44(5):571-7. PubMed ID: 26713534 [Abstract] [Full Text] [Related]
2. Gain-of-function EGLN1 prolyl hydroxylase (PHD2 D4E:C127S) in combination with EPAS1 (HIF-2α) polymorphism lowers hemoglobin concentration in Tibetan highlanders. Tashi T, Scott Reading N, Wuren T, Zhang X, Moore LG, Hu H, Tang F, Shestakova A, Lorenzo F, Burjanivova T, Koul P, Guchhait P, Wittwer CT, Julian CG, Shah B, Huff CD, Gordeuk VR, Prchal JT, Ge R. J Mol Med (Berl); 2017 Jun; 95(6):665-670. PubMed ID: 28233034 [Abstract] [Full Text] [Related]
3. EPAS1 and EGLN1 associations with high altitude sickness in Han and Tibetan Chinese at the Qinghai-Tibetan Plateau. Buroker NE, Ning XH, Zhou ZN, Li K, Cen WJ, Wu XF, Zhu WZ, Scott CR, Chen SH. Blood Cells Mol Dis; 2012 Aug 15; 49(2):67-73. PubMed ID: 22595196 [Abstract] [Full Text] [Related]
4. [Correlation between EGLN1 gene, protein express in lung tissue of rats and pulmonary artery pressure at different altitude]. Li SH, Li S, Sun L, Bai ZZ, Yang QY, Ga Q, Jin GE. Zhonghua Yi Xue Za Zhi; 2016 Aug 23; 96(32):2592-7. PubMed ID: 27596558 [Abstract] [Full Text] [Related]
5. Genetic and immune changes in Tibetan high-altitude populations contribute to biological adaptation to hypoxia. Bai J, Li L, Li Y, Zhang L. Environ Health Prev Med; 2022 Aug 23; 27():39. PubMed ID: 36244759 [Abstract] [Full Text] [Related]
6. Tibetans living at sea level have a hyporesponsive hypoxia-inducible factor system and blunted physiological responses to hypoxia. Petousi N, Croft QP, Cavalleri GL, Cheng HY, Formenti F, Ishida K, Lunn D, McCormack M, Shianna KV, Talbot NP, Ratcliffe PJ, Robbins PA. J Appl Physiol (1985); 2014 Apr 01; 116(7):893-904. PubMed ID: 24030663 [Abstract] [Full Text] [Related]
7. Human high-altitude adaptation: forward genetics meets the HIF pathway. Bigham AW, Lee FS. Genes Dev; 2014 Oct 15; 28(20):2189-204. PubMed ID: 25319824 [Abstract] [Full Text] [Related]
8. Convergent evolution on the hypoxia-inducible factor (HIF) pathway genes EGLN1 and EPAS1 in high-altitude ducks. Graham AM, McCracken KG. Heredity (Edinb); 2019 Jun 15; 122(6):819-832. PubMed ID: 30631144 [Abstract] [Full Text] [Related]
9. [Effect of Biantie pretreatment on serum level of PHD2/HIF-1α and brain tissue damage in rats during acute hypobaric hypoxia exposure]. Li XY, Wu CH, Yan YJ, Wang DH, Wang MJ, Hou ZW. Zhongguo Zhen Jiu; 2022 Nov 12; 42(11):1278-84. PubMed ID: 36397226 [Abstract] [Full Text] [Related]
10. Tibetan PHD2, an allele with loss-of-function properties. Song D, Navalsky BE, Guan W, Ingersoll C, Wang T, Loro E, Eeles L, Matchett KB, Percy MJ, Walsby-Tickle J, McCullagh JSO, Medina RJ, Khurana TS, Bigham AW, Lappin TR, Lee FS. Proc Natl Acad Sci U S A; 2020 Jun 02; 117(22):12230-12238. PubMed ID: 32414920 [Abstract] [Full Text] [Related]
11. Hypoxia Inducible Factor pathway proteins in high-altitude mammals. Lee FS. Trends Biochem Sci; 2024 Jan 02; 49(1):79-92. PubMed ID: 38036336 [Abstract] [Full Text] [Related]
12. Genetic determinants of Tibetan high-altitude adaptation. Simonson TS, McClain DA, Jorde LB, Prchal JT. Hum Genet; 2012 Apr 02; 131(4):527-33. PubMed ID: 22068265 [Abstract] [Full Text] [Related]
13. Adaptive genetic changes related to haemoglobin concentration in native high-altitude Tibetans. Simonson TS, Huff CD, Witherspoon DJ, Prchal JT, Jorde LB. Exp Physiol; 2015 Nov 02; 100(11):1263-8. PubMed ID: 26454145 [Abstract] [Full Text] [Related]
14. Differential methylation in EGLN1 associates with blood oxygen saturation and plasma protein levels in high-altitude pulmonary edema. Sharma K, Mishra A, Singh H, Thinlas T, Pasha MAQ. Clin Epigenetics; 2022 Sep 30; 14(1):123. PubMed ID: 36180894 [Abstract] [Full Text] [Related]
15. Down-Regulation of EPAS1 Transcription and Genetic Adaptation of Tibetans to High-Altitude Hypoxia. Peng Y, Cui C, He Y, Ouzhuluobu, Zhang H, Yang D, Zhang Q, Bianbazhuoma, Yang L, He Y, Xiang K, Zhang X, Bhandari S, Shi P, Yangla, Dejiquzong, Baimakangzhuo, Duojizhuoma, Pan Y, Cirenyangji, Baimayangji, Gonggalanzi, Bai C, Bianba, Basang, Ciwangsangbu, Xu S, Chen H, Liu S, Wu T, Qi X, Su B. Mol Biol Evol; 2017 Apr 01; 34(4):818-830. PubMed ID: 28096303 [Abstract] [Full Text] [Related]
16. [Effect of aminophylline on physiological and pathological changes in acute exposure to high altitude in rats]. Wang C, Wang R, Xie H, Yin Q, Jia Z, Li W, Wang Y, Lu H, Tao R. Zhong Nan Da Xue Xue Bao Yi Xue Ban; 2015 Jan 01; 40(1):39-45. PubMed ID: 25652383 [Abstract] [Full Text] [Related]
17. [Adaptation to high altitudes: on which genes was selective pressure exercised?]. Labie D. Med Sci (Paris); 2010 Dec 01; 26(12):1038-9. PubMed ID: 21187040 [No Abstract] [Full Text] [Related]
18. Human adaptation to the hypoxia of high altitude: the Tibetan paradigm from the pregenomic to the postgenomic era. Petousi N, Robbins PA. J Appl Physiol (1985); 2014 Apr 01; 116(7):875-84. PubMed ID: 24201705 [Abstract] [Full Text] [Related]
19. Effects of Altitude and Duration of Differing Levels of Hypoxic Exposure on Hypoxia-Inducible Factor-1α in Rat Tissues. Li XL, Wang WG, Li MX, Liu TL, Tian XY, Wu L. High Alt Med Biol; 2022 Jun 01; 23(2):173-184. PubMed ID: 35708531 [Abstract] [Full Text] [Related]
20. Genetic variations in Tibetan populations and high-altitude adaptation at the Himalayas. Peng Y, Yang Z, Zhang H, Cui C, Qi X, Luo X, Tao X, Wu T, Ouzhuluobu, Basang, Ciwangsangbu, Danzengduojie, Chen H, Shi H, Su B. Mol Biol Evol; 2011 Feb 01; 28(2):1075-81. PubMed ID: 21030426 [Abstract] [Full Text] [Related] Page: [Next] [New Search]