These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


235 related items for PubMed ID: 26715234

  • 21.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 22. Impact of nap length, nap timing and sleep quality on sustaining early morning performance.
    Kubo T, Takeyama H, Matsumoto S, Ebara T, Murata K, Tachi N, Itani T.
    Ind Health; 2007 Aug; 45(4):552-63. PubMed ID: 17878627
    [Abstract] [Full Text] [Related]

  • 23. Improving alertness and performance in emergency department physicians and nurses: the use of planned naps.
    Smith-Coggins R, Howard SK, Mac DT, Wang C, Kwan S, Rosekind MR, Sowb Y, Balise R, Levis J, Gaba DM.
    Ann Emerg Med; 2006 Nov; 48(5):596-604, 604.e1-3. PubMed ID: 17052562
    [Abstract] [Full Text] [Related]

  • 24. Planning Ability and Alertness After Nap Deprivation: Beneficial Effects of Acute Moderate-Intensity Aerobic Exercise Greater Than Sitting Naps.
    Du J, Huang Y, Zhao Z, Wang Y, Xu S, Zhang R, Xiao L, Xu J, Wang H, Su T, Tang Y.
    Front Public Health; 2022 Nov; 10():861923. PubMed ID: 35400075
    [Abstract] [Full Text] [Related]

  • 25. The short-term benefits of brief and long naps following nocturnal sleep restriction.
    Tietzel AJ, Lack LC.
    Sleep; 2001 May 01; 24(3):293-300. PubMed ID: 11322712
    [Abstract] [Full Text] [Related]

  • 26. A pilot study investigating the impact of a caffeine-nap on alertness during a simulated night shift.
    Centofanti S, Banks S, Coussens S, Gray D, Munro E, Nielsen J, Dorrian J.
    Chronobiol Int; 2020 May 01; 37(9-10):1469-1473. PubMed ID: 32819191
    [Abstract] [Full Text] [Related]

  • 27.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 28. No first night shift effect observed following a nocturnal main sleep and a prophylactic 1-h afternoon nap.
    Kosmadopoulos A, Zhou X, Roach GD, Darwent D, Sargent C.
    Chronobiol Int; 2016 May 01; 33(6):716-20. PubMed ID: 27077691
    [Abstract] [Full Text] [Related]

  • 29. Fatiguing effect of multiple take-offs and landings in regional airline operations.
    Honn KA, Satterfield BC, McCauley P, Caldwell JL, Van Dongen HP.
    Accid Anal Prev; 2016 Jan 01; 86():199-208. PubMed ID: 26590506
    [Abstract] [Full Text] [Related]

  • 30. Effects of sleep inertia after daytime naps vary with executive load and time of day.
    Groeger JA, Lo JC, Burns CG, Dijk DJ.
    Behav Neurosci; 2011 Apr 01; 125(2):252-60. PubMed ID: 21463024
    [Abstract] [Full Text] [Related]

  • 31. Scheduled napping as a countermeasure to sleepiness in air traffic controllers.
    Signal TL, Gander PH, Anderson H, Brash S.
    J Sleep Res; 2009 Mar 01; 18(1):11-9. PubMed ID: 19250171
    [Abstract] [Full Text] [Related]

  • 32. Self-awakening improves alertness in the morning and during the day after partial sleep deprivation.
    Ikeda H, Kubo T, Kuriyama K, Takahashi M.
    J Sleep Res; 2014 Dec 01; 23(6):673-680. PubMed ID: 25130898
    [Abstract] [Full Text] [Related]

  • 33. Cognitive workload and sleep restriction interact to influence sleep homeostatic responses.
    Goel N, Abe T, Braun ME, Dinges DF.
    Sleep; 2014 Nov 01; 37(11):1745-56. PubMed ID: 25364070
    [Abstract] [Full Text] [Related]

  • 34. Promoting alertness with a short nap during a night shift.
    Sallinen M, Härmä M, Akerstedt T, Rosa R, Lillqvist O.
    J Sleep Res; 1998 Dec 01; 7(4):240-7. PubMed ID: 9844850
    [Abstract] [Full Text] [Related]

  • 35. Investigation of the effectiveness of a split sleep schedule in sustaining sleep and maintaining performance.
    Jackson ML, Banks S, Belenky G.
    Chronobiol Int; 2014 Dec 01; 31(10):1218-30. PubMed ID: 25222346
    [Abstract] [Full Text] [Related]

  • 36. Effects of napping on sleepiness and sleep-related performance deficits in night-shift workers: a systematic review.
    Ruggiero JS, Redeker NS.
    Biol Res Nurs; 2014 Apr 01; 16(2):134-42. PubMed ID: 23411360
    [Abstract] [Full Text] [Related]

  • 37. The ability to self-monitor cognitive performance during 60 h total sleep deprivation and following 2 nights recovery sleep.
    Boardman JM, Bei B, Mellor A, Anderson C, Sletten TL, Drummond SPA.
    J Sleep Res; 2018 Aug 01; 27(4):e12633. PubMed ID: 29159907
    [Abstract] [Full Text] [Related]

  • 38. Cognitive Impairments during the Transition to Working at Night and on Subsequent Night Shifts.
    McHill AW, Wright KP.
    J Biol Rhythms; 2019 Aug 01; 34(4):432-446. PubMed ID: 31072264
    [Abstract] [Full Text] [Related]

  • 39. Efficient and regular patterns of nighttime sleep are related to increased vulnerability to microsleeps following a single night of sleep restriction.
    Innes CR, Poudel GR, Jones RD.
    Chronobiol Int; 2013 Nov 01; 30(9):1187-96. PubMed ID: 23998288
    [Abstract] [Full Text] [Related]

  • 40. Effects of sleep/wake history and circadian phase on proposed pilot fatigue safety performance indicators.
    Gander PH, Mulrine HM, van den Berg MJ, Smith AA, Signal TL, Wu LJ, Belenky G.
    J Sleep Res; 2015 Feb 01; 24(1):110-9. PubMed ID: 25082509
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 12.