These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. Formation of secondary allo-bile acids by novel enzymes from gut Firmicutes. Lee JW, Cowley ES, Wolf PG, Doden HL, Murai T, Caicedo KYO, Ly LK, Sun F, Takei H, Nittono H, Daniel SL, Cann I, Gaskins HR, Anantharaman K, Alves JMP, Ridlon JM. Gut Microbes; 2022; 14(1):2132903. PubMed ID: 36343662 [Abstract] [Full Text] [Related]
8. CYP3A Specifically Catalyzes 1β-Hydroxylation of Deoxycholic Acid: Characterization and Enzymatic Synthesis of a Potential Novel Urinary Biomarker for CYP3A Activity. Hayes MA, Li XQ, Grönberg G, Diczfalusy U, Andersson TB. Drug Metab Dispos; 2016 Sep; 44(9):1480-9. PubMed ID: 27402728 [Abstract] [Full Text] [Related]
9. Comparative effects of secondary bile acids, deoxycholic and lithocholic acids, on aberrant crypt foci growth in the postinitiation phases of colon carcinogenesis. Baijal PK, Fitzpatrick DW, Bird RP. Nutr Cancer; 1998 Sep; 31(2):81-9. PubMed ID: 9770718 [Abstract] [Full Text] [Related]
13. A metabolic pathway for bile acid dehydroxylation by the gut microbiome. Funabashi M, Grove TL, Wang M, Varma Y, McFadden ME, Brown LC, Guo C, Higginbottom S, Almo SC, Fischbach MA. Nature; 2020 Jun; 582(7813):566-570. PubMed ID: 32555455 [Abstract] [Full Text] [Related]
14. Effects of treatment with deoxycholic acid and chenodeoxycholic acid on the hepatic synthesis of cholesterol and bile acids in healthy subjects. Einarsson C, Hillebrant CG, Axelson M. Hepatology; 2001 May; 33(5):1189-93. PubMed ID: 11343248 [Abstract] [Full Text] [Related]
15. Binding of bile acids by pastry products containing bioactive substances during in vitro digestion. Dziedzic K, Górecka D, Szwengiel A, Smoczyńska P, Czaczyk K, Komolka P. Food Funct; 2015 Mar; 6(3):1011-20. PubMed ID: 25677572 [Abstract] [Full Text] [Related]
16. Kinetic analysis of bile acids in the feces of colorectal cancer patients by gas chromatography-mass spectrometry (GC-MS). Tadano T, Kanoh M, Kondoh H, Matsumoto M, Mimura K, Kanoh Y, Sakamoto K, Kamano T. Rinsho Byori; 2007 May; 55(5):417-27. PubMed ID: 17593686 [Abstract] [Full Text] [Related]
17. Simulation of the metabolism and enterohepatic circulation of endogenous deoxycholic acid in humans using a physiologic pharmacokinetic model for bile acid metabolism. Hofmann AF, Cravetto C, Molino G, Belforte G, Bona B. Gastroenterology; 1987 Oct; 93(4):693-709. PubMed ID: 3623017 [Abstract] [Full Text] [Related]
18. Generation of a single-chain Fv fragment for the monitoring of deoxycholic acid residues anchored on endogenous proteins. Kobayashi N, Ohtoyo M, Wada E, Kato Y, Mano N, Goto J. Steroids; 2005 Apr; 70(4):285-94. PubMed ID: 15784283 [Abstract] [Full Text] [Related]
19. Number of free hydroxyl groups on bile acid phospholipids determines the fluidity and hydration of model membranes. Sreekanth V, Bajaj A. J Phys Chem B; 2013 Oct 10; 117(40):12135-44. PubMed ID: 24079709 [Abstract] [Full Text] [Related]
20. Biotransformation of (20S)-20-hydroxymethylpregna-1,4-dien-3-one by four filamentous fungi. Choudhary MI, Erum S, Atif M, Malik R, Khan NT, Atta-ur-Rahman. Steroids; 2011 Nov 10; 76(12):1288-96. PubMed ID: 21762714 [Abstract] [Full Text] [Related] Page: [Next] [New Search]