These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


424 related items for PubMed ID: 26720762

  • 1.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3. Evaluation of predicted knee-joint muscle forces during gait using an instrumented knee implant.
    Kim HJ, Fernandez JW, Akbarshahi M, Walter JP, Fregly BJ, Pandy MG.
    J Orthop Res; 2009 Oct; 27(10):1326-31. PubMed ID: 19396858
    [Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6. Dual-joint modeling for estimation of total knee replacement contact forces during locomotion.
    Hast MW, Piazza SJ.
    J Biomech Eng; 2013 Feb; 135(2):021013. PubMed ID: 23445058
    [Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9. Concurrent prediction of ground reaction forces and moments and tibiofemoral contact forces during walking using musculoskeletal modelling.
    Peng Y, Zhang Z, Gao Y, Chen Z, Xin H, Zhang Q, Fan X, Jin Z.
    Med Eng Phys; 2018 Feb; 52():31-40. PubMed ID: 29269224
    [Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11. Neuromusculoskeletal Model Calibration Significantly Affects Predicted Knee Contact Forces for Walking.
    Serrancolí G, Kinney AL, Fregly BJ, Font-Llagunes JM.
    J Biomech Eng; 2016 Aug 01; 138(8):0810011-08100111. PubMed ID: 27210105
    [Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14. Subject-specific knee joint geometry improves predictions of medial tibiofemoral contact forces.
    Gerus P, Sartori M, Besier TF, Fregly BJ, Delp SL, Banks SA, Pandy MG, D'Lima DD, Lloyd DG.
    J Biomech; 2013 Nov 15; 46(16):2778-86. PubMed ID: 24074941
    [Abstract] [Full Text] [Related]

  • 15. Prediction of medial and lateral contact force of the knee joint during normal and turning gait after total knee replacement.
    Purevsuren T, Dorj A, Kim K, Kim YH.
    Proc Inst Mech Eng H; 2016 Apr 15; 230(4):288-97. PubMed ID: 26908641
    [Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18. Fine tuning total knee replacement contact force prediction algorithms using blinded model validation.
    Lundberg HJ, Knowlton C, Wimmer MA.
    J Biomech Eng; 2013 Feb 15; 135(2):021015. PubMed ID: 23445060
    [Abstract] [Full Text] [Related]

  • 19. Contribution of tibiofemoral joint contact to net loads at the knee in gait.
    Walter JP, Korkmaz N, Fregly BJ, Pandy MG.
    J Orthop Res; 2015 Jul 15; 33(7):1054-60. PubMed ID: 25676012
    [Abstract] [Full Text] [Related]

  • 20. Musculoskeletal multibody dynamics simulation of the contact mechanics and kinematics of a natural knee joint during a walking cycle.
    Hu J, Chen Z, Xin H, Zhang Q, Jin Z.
    Proc Inst Mech Eng H; 2018 May 15; 232(5):508-519. PubMed ID: 29637803
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 22.