These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


319 related items for PubMed ID: 26726990

  • 21. Computational analysis of thin film InGaAs/GaAs quantum well solar cells with back side light trapping structures.
    McPheeters CO, Yu ET.
    Opt Express; 2012 Nov 05; 20 Suppl 6():A864-78. PubMed ID: 23187663
    [Abstract] [Full Text] [Related]

  • 22.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 23.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 24.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 25.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 26. Nanosilver-decorated TiO2 nanofibers coated with a SiO2 layer for enhanced light scattering and localized surface plasmons in dye-sensitized solar cells.
    Hwang SH, Roh J, Jang J.
    Chemistry; 2013 Sep 23; 19(39):13120-6. PubMed ID: 23934778
    [Abstract] [Full Text] [Related]

  • 27.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 28.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 29. Light management for photovoltaics using high-index nanostructures.
    Brongersma ML, Cui Y, Fan S.
    Nat Mater; 2014 May 23; 13(5):451-60. PubMed ID: 24751773
    [Abstract] [Full Text] [Related]

  • 30.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 31.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 32. The role of colloidal plasmonic nanostructures in organic solar cells.
    Singh CR, Honold T, Gujar TP, Retsch M, Fery A, Karg M, Thelakkat M.
    Phys Chem Chem Phys; 2016 Aug 17; 18(33):23155-63. PubMed ID: 27494082
    [Abstract] [Full Text] [Related]

  • 33. Can plasmonic Al nanoparticles improve absorption in triple junction solar cells?
    Yang L, Pillai S, Green MA.
    Sci Rep; 2015 Jul 03; 5():11852. PubMed ID: 26138405
    [Abstract] [Full Text] [Related]

  • 34.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 35. Light trapping regimes in thin-film silicon solar cells with a photonic pattern.
    Zanotto S, Liscidini M, Andreani LC.
    Opt Express; 2010 Mar 01; 18(5):4260-74. PubMed ID: 20389438
    [Abstract] [Full Text] [Related]

  • 36.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 37. Dual broadband near-infrared perfect absorber based on a hybrid plasmonic-photonic microstructure.
    Liu Z, Zhan P, Chen J, Tang C, Yan Z, Chen Z, Wang Z.
    Opt Express; 2013 Feb 11; 21(3):3021-30. PubMed ID: 23481760
    [Abstract] [Full Text] [Related]

  • 38. Light trapping in ZnO nanowire arrays covered with an absorbing shell for solar cells.
    Michallon J, Bucci D, Morand A, Zanuccoli M, Consonni V, Kaminski-Cachopo A.
    Opt Express; 2014 Jun 30; 22 Suppl 4():A1174-89. PubMed ID: 24978080
    [Abstract] [Full Text] [Related]

  • 39. Plasmonic thin film InP/graphene-based Schottky-junction solar cell using nanorods.
    Nematpour A, Nikoufard M.
    J Adv Res; 2018 Mar 30; 10():15-20. PubMed ID: 30046472
    [Abstract] [Full Text] [Related]

  • 40.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 16.