These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
438 related items for PubMed ID: 26727353
1. Altered Phenylpropanoid Metabolism in the Maize Lc-Expressed Sweet Potato (Ipomoea batatas) Affects Storage Root Development. Wang H, Yang J, Zhang M, Fan W, Firon N, Pattanaik S, Yuan L, Zhang P. Sci Rep; 2016 Jan 04; 6():18645. PubMed ID: 26727353 [Abstract] [Full Text] [Related]
2. RNA-Seq and iTRAQ reveal multiple pathways involved in storage root formation and development in sweet potato (Ipomoea batatas L.). Dong T, Zhu M, Yu J, Han R, Tang C, Xu T, Liu J, Li Z. BMC Plant Biol; 2019 Apr 11; 19(1):136. PubMed ID: 30971210 [Abstract] [Full Text] [Related]
3. Transcriptional profiling of sweetpotato (Ipomoea batatas) roots indicates down-regulation of lignin biosynthesis and up-regulation of starch biosynthesis at an early stage of storage root formation. Firon N, LaBonte D, Villordon A, Kfir Y, Solis J, Lapis E, Perlman TS, Doron-Faigenboim A, Hetzroni A, Althan L, Adani Nadir L. BMC Genomics; 2013 Jul 09; 14():460. PubMed ID: 23834507 [Abstract] [Full Text] [Related]
4. Overexpression of the IbMYB1 gene in an orange-fleshed sweet potato cultivar produces a dual-pigmented transgenic sweet potato with improved antioxidant activity. Park SC, Kim YH, Kim SH, Jeong YJ, Kim CY, Lee JS, Bae JY, Ahn MJ, Jeong JC, Lee HS, Kwak SS. Physiol Plant; 2015 Apr 09; 153(4):525-37. PubMed ID: 25220246 [Abstract] [Full Text] [Related]
5. Altered carbohydrate metabolism in the storage roots of sweet potato plants overexpressing the SRF1 gene, which encodes a Dof zinc finger transcription factor. Tanaka M, Takahata Y, Nakayama H, Nakatani M, Tahara M. Planta; 2009 Sep 09; 230(4):737-46. PubMed ID: 19618208 [Abstract] [Full Text] [Related]
6. Sweet potato ADP-glucose pyrophosphorylase small subunit affects vegetative growth, starch content and storage root yield. Fan W, Wang Y, Zhang L, Fang Y, Yan M, Yuan L, Yang J, Wang H. Plant Physiol Biochem; 2023 Jul 09; 200():107796. PubMed ID: 37269824 [Abstract] [Full Text] [Related]
7. A sucrose non-fermenting-1-related protein kinase-1 gene, IbSnRK1, improves starch content, composition, granule size, degree of crystallinity and gelatinization in transgenic sweet potato. Ren Z, He S, Zhao N, Zhai H, Liu Q. Plant Biotechnol J; 2019 Jan 09; 17(1):21-32. PubMed ID: 29734529 [Abstract] [Full Text] [Related]
8. A soluble starch synthase I gene, IbSSI, alters the content, composition, granule size and structure of starch in transgenic sweet potato. Wang Y, Li Y, Zhang H, Zhai H, Liu Q, He S. Sci Rep; 2017 May 24; 7(1):2315. PubMed ID: 28539660 [Abstract] [Full Text] [Related]
9. Comparative Transcriptome Analysis Reveals the Transcriptional Alterations in Growth- and Development-Related Genes in Sweet Potato Plants Infected and Non-Infected by SPFMV, SPV2, and SPVG. Shi J, Zhao L, Yan B, Zhu Y, Ma H, Chen W, Ruan S. Int J Mol Sci; 2019 Feb 26; 20(5):. PubMed ID: 30813603 [Abstract] [Full Text] [Related]
10. Starch content differences between two sweet potato accessions are associated with specific changes in gene expression. Yang S, Liu X, Qiao S, Tan W, Li M, Feng J, Zhang C, Kang X, Huang T, Zhu Y, Yang L, Wang D. Funct Integr Genomics; 2018 Nov 26; 18(6):613-625. PubMed ID: 29754269 [Abstract] [Full Text] [Related]
11. Proteomic approach reveals that starch degradation contributes to anthocyanin accumulation in tuberous root of purple sweet potato. Wang S, Pan D, Lv X, Song X, Qiu Z, Huang C, Huang R, Chen W. J Proteomics; 2016 Jun 30; 143():298-305. PubMed ID: 26957144 [Abstract] [Full Text] [Related]
12. [Functional analysis on sucrose transporters in sweet potato]. Liu Y, Wu Z, Wu W, Yang C, Chen C, Zhang K. Sheng Wu Gong Cheng Xue Bao; 2023 Jul 25; 39(7):2772-2793. PubMed ID: 37584131 [Abstract] [Full Text] [Related]
13. Dynamic network biomarker analysis discovers IbNAC083 in the initiation and regulation of sweet potato root tuberization. He S, Wang H, Hao X, Wu Y, Bian X, Yin M, Zhang Y, Fan W, Dai H, Yuan L, Zhang P, Chen L. Plant J; 2021 Nov 25; 108(3):793-813. PubMed ID: 34460981 [Abstract] [Full Text] [Related]
14. Isolation and functional characterization of a glucose-6-phosphate/phosphate translocator (IbG6PPT1) from sweet potato (Ipomoea batatas (L.) Lam.). Wu Z, Wang Z, Zhang K. BMC Plant Biol; 2021 Dec 16; 21(1):595. PubMed ID: 34915842 [Abstract] [Full Text] [Related]
15. Source-sink synergy is the key unlocking sweet potato starch yield potential. Jiang Z, Wei Z, Zhang J, Zheng C, Zhu H, Zhai H, He S, Gao S, Zhao N, Zhang H, Liu Q. Nat Commun; 2024 Aug 23; 15(1):7260. PubMed ID: 39179563 [Abstract] [Full Text] [Related]
16. Starch self-processing in transgenic sweet potato roots expressing a hyperthermophilic α-amylase. Santa-Maria MC, Yencho CG, Haigler CH, Thompson WF, Kelly RM, Sosinski B. Biotechnol Prog; 2011 Aug 23; 27(2):351-9. PubMed ID: 21365786 [Abstract] [Full Text] [Related]
17. Plastidial Phosphoglucomutase (pPGM) Overexpression Increases the Starch Content of Transgenic Sweet Potato Storage Roots. Wang Y, Zhang H, Li Y, Zhang Q, Liu Q, Zhai H, Zhao N, Yang Y, He S. Genes (Basel); 2022 Nov 28; 13(12):. PubMed ID: 36553501 [Abstract] [Full Text] [Related]
18. The sweet potato IbMYB1 gene as a potential visible marker for sweet potato intragenic vector system. Kim CY, Ahn YO, Kim SH, Kim YH, Lee HS, Catanach AS, Jacobs JM, Conner AJ, Kwak SS. Physiol Plant; 2010 Jul 01; 139(3):229-40. PubMed ID: 20163556 [Abstract] [Full Text] [Related]
19. Elevated carbon dioxide and drought modulate physiology and storage-root development in sweet potato by regulating microRNAs. Saminathan T, Alvarado A, Lopez C, Shinde S, Gajanayake B, Abburi VL, Vajja VG, Jagadeeswaran G, Raja Reddy K, Nimmakayala P, Reddy UK. Funct Integr Genomics; 2019 Jan 01; 19(1):171-190. PubMed ID: 30244303 [Abstract] [Full Text] [Related]