These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


255 related items for PubMed ID: 2672890

  • 1. High resolution electron microscopy of nonstoichiometric apatite crystals.
    Nelson DG, Barry JC.
    Anat Rec; 1989 Jun; 224(2):265-76. PubMed ID: 2672890
    [Abstract] [Full Text] [Related]

  • 2. Solution-mediated transformation of octacalcium phosphate (OCP) to apatite.
    LeGeros RZ, Daculsi G, Orly I, Abergas T, Torres W.
    Scanning Microsc; 1989 Mar; 3(1):129-37; discussion 137-8. PubMed ID: 2740859
    [Abstract] [Full Text] [Related]

  • 3. Formation and transformation of octacalcium phosphate, OCP: a preliminary report.
    LeGeros RZ, Kijkowska R, LeGeros JP.
    Scan Electron Microsc; 1984 Mar; (Pt 4):1771-7. PubMed ID: 6523053
    [Abstract] [Full Text] [Related]

  • 4. Control of apatite crystal growth by the co-operative effect of a recombinant porcine amelogenin and fluoride.
    Iijima M, Du C, Abbott C, Doi Y, Moradian-Oldak J.
    Eur J Oral Sci; 2006 May; 114 Suppl 1():304-7; discussion 327-9, 382. PubMed ID: 16674703
    [Abstract] [Full Text] [Related]

  • 5. Solid-state NMR study of the transformation of octacalcium phosphate to hydroxyapatite: a mechanistic model for central dark line formation.
    Tseng YH, Mou CY, Chan JC.
    J Am Chem Soc; 2006 May 31; 128(21):6909-18. PubMed ID: 16719471
    [Abstract] [Full Text] [Related]

  • 6. Control of apatite crystal growth in a fluoride containing amelogenin-rich matrix.
    Iijima M, Moradian-Oldak J.
    Biomaterials; 2005 May 31; 26(13):1595-603. PubMed ID: 15522761
    [Abstract] [Full Text] [Related]

  • 7. Effects of F- on apatite-octacalcium phosphate intergrowth and crystal morphology in a model system of tooth enamel formation.
    Iijima M, Tohda H, Suzuki H, Yanagisawa T, Moriwaki Y.
    Calcif Tissue Int; 1992 Apr 31; 50(4):357-61. PubMed ID: 1571848
    [Abstract] [Full Text] [Related]

  • 8. Fluoride analysis of apatite crystals with a central planar OCP inclusion: concerning the role of F- ions on apatite/OCP/apatite structure formation.
    Iijima M, Nelson DG, Pan Y, Kreinbrink AT, Adachi M, Goto T, Moriwaki Y.
    Calcif Tissue Int; 1996 Nov 31; 59(5):377-84. PubMed ID: 8849405
    [Abstract] [Full Text] [Related]

  • 9. Formation of bone-like apatite enhanced by hydrolysis of octacalcium phosphate crystals deposited in collagen matrix.
    Honda Y, Kamakura S, Sasaki K, Suzuki O.
    J Biomed Mater Res B Appl Biomater; 2007 Feb 31; 80(2):281-9. PubMed ID: 16850470
    [Abstract] [Full Text] [Related]

  • 10. Surface structure study of biological calcium phosphate apatite crystals from human tooth enamel.
    Brès EF, Hutchison JL.
    J Biomed Mater Res; 2002 Feb 31; 63(4):433-40. PubMed ID: 12115752
    [Abstract] [Full Text] [Related]

  • 11. Modification of calcium-phosphate coatings on titanium by recombinant amelogenin.
    Wen HB, Moradian-Oldak J.
    J Biomed Mater Res A; 2003 Mar 01; 64(3):483-90. PubMed ID: 12579562
    [Abstract] [Full Text] [Related]

  • 12. Assembly of amelogenin proteolytic products and control of octacalcium phosphate crystal morphology.
    Moradian-Oldak J, Iijima M, Bouropoulos N, Wen HB.
    Connect Tissue Res; 2003 Mar 01; 44 Suppl 1():58-64. PubMed ID: 12952175
    [Abstract] [Full Text] [Related]

  • 13. Transmission electron microscopic study of calcium phosphate formation in supersaturated solutions seeded with apatite.
    Doi Y, Eanes ED.
    Calcif Tissue Int; 1984 Jan 01; 36(1):39-47. PubMed ID: 6423234
    [Abstract] [Full Text] [Related]

  • 14. The structure of (100) defects in carbonated apatite crystallites: a high resolution electron microscope study.
    Nelson DG, Wood GJ, Barry JC, Featherstone JD.
    Ultramicroscopy; 1986 Jan 01; 19(3):253-65. PubMed ID: 3765183
    [Abstract] [Full Text] [Related]

  • 15. The role of brushite and octacalcium phosphate in apatite formation.
    Johnsson MS, Nancollas GH.
    Crit Rev Oral Biol Med; 1992 Jan 01; 3(1-2):61-82. PubMed ID: 1730071
    [Abstract] [Full Text] [Related]

  • 16. Transient precursor strategy or very small biological apatite crystals?
    Grynpas MD, Omelon S.
    Bone; 2007 Aug 01; 41(2):162-4. PubMed ID: 17537689
    [Abstract] [Full Text] [Related]

  • 17. Structural, morphological and surface characteristics of two types of octacalcium phosphate-derived fluoride-containing apatitic calcium phosphates.
    Shiwaku Y, Anada T, Yamazaki H, Honda Y, Morimoto S, Sasaki K, Suzuki O.
    Acta Biomater; 2012 Dec 01; 8(12):4417-25. PubMed ID: 22868193
    [Abstract] [Full Text] [Related]

  • 18. High-resolution electron microscopy of octacalcium phosphate and its hydrolysis products.
    Nelson DG, McLean JD.
    Calcif Tissue Int; 1984 Mar 01; 36(2):219-32. PubMed ID: 6430505
    [Abstract] [Full Text] [Related]

  • 19. Observations of structural features and characteristics of biological apatite crystals. 3. Observation on ultrastructure of human dentin crystals.
    Ichijo T, Yamashita Y, Terashima T.
    Bull Tokyo Med Dent Univ; 1993 Mar 01; 40(1):29-44. PubMed ID: 8384934
    [Abstract] [Full Text] [Related]

  • 20. Some ultrastructural aspects of biological apatite dissolution and possible role of dislocations.
    Daculsi G, Kerebel B.
    J Biol Buccale; 1977 Sep 01; 5(3):203-18. PubMed ID: 122695
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 13.