These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


373 related items for PubMed ID: 26729644

  • 1.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4. A review of numerical methods for red blood cell flow simulation.
    Ju M, Ye SS, Namgung B, Cho S, Low HT, Leo HL, Kim S.
    Comput Methods Biomech Biomed Engin; 2015; 18(2):130-40. PubMed ID: 23582050
    [Abstract] [Full Text] [Related]

  • 5. Numerical Simulations of the Motion and Deformation of Three RBCs during Poiseuille Flow through a Constricted Vessel Using IB-LBM.
    Wang R, Wei Y, Wu C, Sun L, Zheng W.
    Comput Math Methods Med; 2018; 2018():9425375. PubMed ID: 29681999
    [Abstract] [Full Text] [Related]

  • 6. Start-up shape dynamics of red blood cells in microcapillary flow.
    Tomaiuolo G, Guido S.
    Microvasc Res; 2011 Jul; 82(1):35-41. PubMed ID: 21397612
    [Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8. Numerical investigation of blood flow and red blood cell rheology: the magnetic field effect.
    Javadi Eshkalak N, Aminfar H, Mohammadpourfard M, Taheri MH, Ahookhosh K.
    Electromagn Biol Med; 2022 Apr 03; 41(2):129-141. PubMed ID: 35067145
    [Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10. Numerical simulation of red blood cell distributions in three-dimensional microvascular bifurcations.
    Hyakutake T, Nagai S.
    Microvasc Res; 2015 Jan 03; 97():115-23. PubMed ID: 25446286
    [Abstract] [Full Text] [Related]

  • 11. Two-dimensional simulation of red blood cell deformation and lateral migration in microvessels.
    Secomb TW, Styp-Rekowska B, Pries AR.
    Ann Biomed Eng; 2007 May 03; 35(5):755-65. PubMed ID: 17380392
    [Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13. Large scale simulation of red blood cell aggregation in shear flows.
    Xu D, Kaliviotis E, Munjiza A, Avital E, Ji C, Williams J.
    J Biomech; 2013 Jul 26; 46(11):1810-7. PubMed ID: 23809770
    [Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16. Modeling the Effect of Red Blood Cells Deformability on Blood Flow Conditions in Human Carotid Artery Bifurcation.
    Urevc J, Žun I, Brumen M, Štok B.
    J Biomech Eng; 2017 Jan 01; 139(1):. PubMed ID: 27814428
    [Abstract] [Full Text] [Related]

  • 17. SPH-DEM approach to numerically simulate the deformation of three-dimensional RBCs in non-uniform capillaries.
    Polwaththe-Gallage HN, Saha SC, Sauret E, Flower R, Senadeera W, Gu Y.
    Biomed Eng Online; 2016 Dec 28; 15(Suppl 2):161. PubMed ID: 28155717
    [Abstract] [Full Text] [Related]

  • 18. A micro-scale simulation of red blood cell passage through symmetric and asymmetric bifurcated vessels.
    Wang T, Rongin U, Xing Z.
    Sci Rep; 2016 Feb 02; 6():20262. PubMed ID: 26830454
    [Abstract] [Full Text] [Related]

  • 19. Theoretical model and experimental study of red blood cell (RBC) deformation in microchannels.
    Korin N, Bransky A, Dinnar U.
    J Biomech; 2007 Feb 02; 40(9):2088-95. PubMed ID: 17188279
    [Abstract] [Full Text] [Related]

  • 20. A new membrane formulation for modelling the flow of stomatocyte, discocyte, and echinocyte red blood cells.
    Karandeniya DMW, Holmes DW, Sauret E, Gu YT.
    Biomech Model Mechanobiol; 2022 Jun 02; 21(3):899-917. PubMed ID: 35412191
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 19.