These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
166 related items for PubMed ID: 26737025
1. Fiber size-selective stimulation using action potential filtering for a peripheral nerve interface: A simulation study. Rapeaux A, Nikolic K, Williams I, Eftekhar A, Constandinou TG. Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():3411-4. PubMed ID: 26737025 [Abstract] [Full Text] [Related]
2. A novel electrode array for diameter-dependent control of axonal excitability: a simulation study. Lertmanorat Z, Durand DM. IEEE Trans Biomed Eng; 2004 Jul; 51(7):1242-50. PubMed ID: 15248540 [Abstract] [Full Text] [Related]
3. Different pulse shapes to obtain small fiber selective activation by anodal blocking--a simulation study. Vucković A, Rijkhoff NJ, Struijk JJ. IEEE Trans Biomed Eng; 2004 May; 51(5):698-706. PubMed ID: 15132495 [Abstract] [Full Text] [Related]
4. Effect of bipolar cuff electrode design on block thresholds in high-frequency electrical neural conduction block. Ackermann DM, Foldes EL, Bhadra N, Kilgore KL. IEEE Trans Neural Syst Rehabil Eng; 2009 Oct; 17(5):469-77. PubMed ID: 19840914 [Abstract] [Full Text] [Related]
5. A device for emulating cuff recordings of action potentials propagating along peripheral nerves. Rieger R, Schuettler M, Chuang SC. IEEE Trans Neural Syst Rehabil Eng; 2014 Sep; 22(5):937-45. PubMed ID: 24760928 [Abstract] [Full Text] [Related]
6. Simulation of nerve block by high-frequency sinusoidal electrical current based on the Hodgkin-Huxley model. Tai C, de Groat WC, Roppolo JR. IEEE Trans Neural Syst Rehabil Eng; 2005 Sep; 13(3):415-22. PubMed ID: 16200764 [Abstract] [Full Text] [Related]
7. Optimizing the design of bipolar nerve cuff electrodes for improved recording of peripheral nerve activity. Sabetian P, Popovic MR, Yoo PB. J Neural Eng; 2017 Jun; 14(3):036015. PubMed ID: 28251960 [Abstract] [Full Text] [Related]
8. A micro-scale printable nanoclip for electrical stimulation and recording in small nerves. Lissandrello CA, Gillis WF, Shen J, Pearre BW, Vitale F, Pasquali M, Holinski BJ, Chew DJ, White AE, Gardner TJ. J Neural Eng; 2017 Jun; 14(3):036006. PubMed ID: 28323640 [Abstract] [Full Text] [Related]
9. Comparison of Mono-, Bi-, and Tripolar Configurations for Stimulation and Recording With an Interfascicular Interface. Nielsen TN, Sevcencu C, Struijk JJ. IEEE Trans Neural Syst Rehabil Eng; 2014 Jan; 22(1):88-95. PubMed ID: 23981544 [Abstract] [Full Text] [Related]
10. Rodent model for assessing the long term safety and performance of peripheral nerve recording electrodes. Vasudevan S, Patel K, Welle C. J Neural Eng; 2017 Feb; 14(1):016008. PubMed ID: 27934777 [Abstract] [Full Text] [Related]
11. A simulation study of the combined thermoelectric extracellular stimulation of the sciatic nerve of the Xenopus laevis: the localized transient heat block. Mou Z, Triantis IF, Woods VM, Toumazou C, Nikolic K. IEEE Trans Biomed Eng; 2012 Jun; 59(6):1758-69. PubMed ID: 22510941 [Abstract] [Full Text] [Related]
12. Mechanism of nerve conduction block induced by high-frequency biphasic electrical currents. Zhang X, Roppolo JR, de Groat WC, Tai C. IEEE Trans Biomed Eng; 2006 Dec; 53(12 Pt 1):2445-54. PubMed ID: 17153201 [Abstract] [Full Text] [Related]
13. Assessment on selectivity of multi-contact cuff electrode for recording peripheral nerve signals using Fitzhugh-Nagumo model of nerve excitation. Taghipour-Farshi H, Frounchi J, Ahmadiasl N, Shahabi P, Salekzamani Y. J Back Musculoskelet Rehabil; 2016 Nov 21; 29(4):749-756. PubMed ID: 26966830 [Abstract] [Full Text] [Related]
14. Fascicular perineurium thickness, size, and position affect model predictions of neural excitation. Grinberg Y, Schiefer MA, Tyler DJ, Gustafson KJ. IEEE Trans Neural Syst Rehabil Eng; 2008 Dec 21; 16(6):572-81. PubMed ID: 19144589 [Abstract] [Full Text] [Related]
15. Stimulation selectivity of the “thin-film longitudinal intrafascicular electrode” (tfLIFE) and the “transverse intrafascicular multi-channel electrode” (TIME) in the large nerve animal model. Kundu A, Harreby KR, Yoshida K, Boretius T, Stieglitz T, Jensen W. IEEE Trans Neural Syst Rehabil Eng; 2014 Mar 21; 22(2):400-10. PubMed ID: 23799699 [Abstract] [Full Text] [Related]
16. Numerical simulation of multipolar configuration and prepulse technique to obtain spatially reverse recruitment order. Dali M, Rossel O, Guiraud D. Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug 21; 2016():5461-5464. PubMed ID: 28269493 [Abstract] [Full Text] [Related]
17. Optimal design of neural stimulation current waveforms. Halpern M. Annu Int Conf IEEE Eng Med Biol Soc; 2009 Aug 21; 2009():189-92. PubMed ID: 19964206 [Abstract] [Full Text] [Related]
18. Simulation of high-frequency sinusoidal electrical block of mammalian myelinated axons. Bhadra N, Lahowetz EA, Foldes ST, Kilgore KL. J Comput Neurosci; 2007 Jun 21; 22(3):313-26. PubMed ID: 17200886 [Abstract] [Full Text] [Related]
19. Modelling the effects of ephaptic coupling on selectivity and response patterns during artificial stimulation of peripheral nerves. Capllonch-Juan M, Sepulveda F. PLoS Comput Biol; 2020 Jun 21; 16(6):e1007826. PubMed ID: 32479499 [Abstract] [Full Text] [Related]
20. Selective stimulation of sacral nerve roots for bladder control: a study by computer modeling. Rijkhoff NJ, Holsheimer J, Koldewijn EL, Struijk JJ, van Kerrebroeck PE, Debruyne FM, Wijkstra H. IEEE Trans Biomed Eng; 1994 May 21; 41(5):413-24. PubMed ID: 8070800 [Abstract] [Full Text] [Related] Page: [Next] [New Search]