These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


267 related items for PubMed ID: 26741170

  • 1. Immobilization of Active Bacteriophages on Polyhydroxyalkanoate Surfaces.
    Wang C, Sauvageau D, Elias A.
    ACS Appl Mater Interfaces; 2016 Jan 20; 8(2):1128-38. PubMed ID: 26741170
    [Abstract] [Full Text] [Related]

  • 2. Immobilization of bacteriophages on gold surfaces for the specific capture of pathogens.
    Singh A, Glass N, Tolba M, Brovko L, Griffiths M, Evoy S.
    Biosens Bioelectron; 2009 Aug 15; 24(12):3645-51. PubMed ID: 19520565
    [Abstract] [Full Text] [Related]

  • 3. Bacteriophage-modified microarrays for the direct impedimetric detection of bacteria.
    Shabani A, Zourob M, Allain B, Marquette CA, Lawrence MF, Mandeville R.
    Anal Chem; 2008 Dec 15; 80(24):9475-82. PubMed ID: 19072262
    [Abstract] [Full Text] [Related]

  • 4. Chemically immobilized T4-bacteriophage for specific Escherichia coli detection using surface plasmon resonance.
    Arya SK, Singh A, Naidoo R, Wu P, McDermott MT, Evoy S.
    Analyst; 2011 Feb 07; 136(3):486-92. PubMed ID: 21079850
    [Abstract] [Full Text] [Related]

  • 5. Bacterial capture efficiency and antimicrobial activity of phage-functionalized model surfaces.
    Hosseinidoust Z, Van de Ven TG, Tufenkji N.
    Langmuir; 2011 May 03; 27(9):5472-80. PubMed ID: 21452812
    [Abstract] [Full Text] [Related]

  • 6. Physisorption and chemisorption of T4 bacteriophages on amino functionalized silica particles.
    Bone S, Alum A, Markovski J, Hristovski K, Bar-Zeev E, Kaufman Y, Abbaszadegan M, Perreault F.
    J Colloid Interface Sci; 2018 Dec 15; 532():68-76. PubMed ID: 30077067
    [Abstract] [Full Text] [Related]

  • 7. Surface-immobilization of chromatographically purified bacteriophages for the optimized capture of bacteria.
    Naidoo R, Singh A, Arya SK, Beadle B, Glass N, Tanha J, Szymanski CM, Evoy S.
    Bacteriophage; 2012 Jan 01; 2(1):15-24. PubMed ID: 22666653
    [Abstract] [Full Text] [Related]

  • 8. Effects of environmental and clinical interferents on the host capture efficiency of immobilized bacteriophages.
    Dixon DV, Hosseinidoust Z, Tufenkji N.
    Langmuir; 2014 Mar 25; 30(11):3184-90. PubMed ID: 24617341
    [Abstract] [Full Text] [Related]

  • 9. Diffusion properties of bacteriophages through agarose gel membrane.
    Hu J, Miyanaga K, Tanji Y.
    Biotechnol Prog; 2010 Mar 25; 26(5):1213-21. PubMed ID: 20945479
    [Abstract] [Full Text] [Related]

  • 10. Bacterial detection using bacteriophages and gold nanorods by following time-dependent changes in Raman spectral signals.
    Moghtader F, Tomak A, Zareie HM, Piskin E.
    Artif Cells Nanomed Biotechnol; 2018 Mar 25; 46(sup2):122-130. PubMed ID: 29583029
    [Abstract] [Full Text] [Related]

  • 11. Oriented immobilization of bacteriophages for biosensor applications.
    Tolba M, Minikh O, Brovko LY, Evoy S, Griffiths MW.
    Appl Environ Microbiol; 2010 Jan 25; 76(2):528-35. PubMed ID: 19948867
    [Abstract] [Full Text] [Related]

  • 12. Immobilization of bacteriophages on modified silica particles.
    Cademartiri R, Anany H, Gross I, Bhayani R, Griffiths M, Brook MA.
    Biomaterials; 2010 Mar 25; 31(7):1904-10. PubMed ID: 19945158
    [Abstract] [Full Text] [Related]

  • 13. Optimizing Bacteriophage Surface Densities for Bacterial Capture and Sensing in Quartz Crystal Microbalance with Dissipation Monitoring.
    Olsson AL, Wargenau A, Tufenkji N.
    ACS Appl Mater Interfaces; 2016 Jun 08; 8(22):13698-706. PubMed ID: 27171886
    [Abstract] [Full Text] [Related]

  • 14. Effect of unassembled phage protein complexes on the attachment to cellulose of genetically modified bacteriophages containing cellulose binding modules.
    Li Z, Tolba M, Griffiths M, van de Ven TG.
    Colloids Surf B Biointerfaces; 2010 Apr 01; 76(2):529-34. PubMed ID: 20071155
    [Abstract] [Full Text] [Related]

  • 15. Development of a novel bacteriophage based biomagnetic separation method as an aid for sensitive detection of viable Escherichia coli.
    Wang Z, Wang D, Chen J, Sela DA, Nugen SR.
    Analyst; 2016 Feb 07; 141(3):1009-16. PubMed ID: 26689710
    [Abstract] [Full Text] [Related]

  • 16. Bacteriophage-based biosorbents coupled with bioluminescent ATP assay for rapid concentration and detection of Escherichia coli.
    Minikh O, Tolba M, Brovko LY, Griffiths MW.
    J Microbiol Methods; 2010 Aug 07; 82(2):177-83. PubMed ID: 20561957
    [Abstract] [Full Text] [Related]

  • 17. Impedance biosensing using phages for bacteria detection: generation of dual signals as the clue for in-chip assay confirmation.
    Mejri MB, Baccar H, Baldrich E, Del Campo FJ, Helali S, Ktari T, Simonian A, Aouni M, Abdelghani A.
    Biosens Bioelectron; 2010 Dec 15; 26(4):1261-7. PubMed ID: 20673624
    [Abstract] [Full Text] [Related]

  • 18. Antibacterial Efficiency of Surface-Immobilized Flavobacterium-Infecting Bacteriophage.
    Leppänen M, Maasilta IJ, Sundberg LR.
    ACS Appl Bio Mater; 2019 Nov 18; 2(11):4720-4727. PubMed ID: 35021472
    [Abstract] [Full Text] [Related]

  • 19. A method for evaluating the host range of bacteriophages using phages fluorescently labeled with 5-ethynyl-2'-deoxyuridine (EdU).
    Ohno S, Okano H, Tanji Y, Ohashi A, Watanabe K, Takai K, Imachi H.
    Appl Microbiol Biotechnol; 2012 Aug 18; 95(3):777-88. PubMed ID: 22660768
    [Abstract] [Full Text] [Related]

  • 20. Nonleaching antibacterial glass surfaces via "Grafting Onto": the effect of the number of quaternary ammonium groups on biocidal activity.
    Huang J, Koepsel RR, Murata H, Wu W, Lee SB, Kowalewski T, Russell AJ, Matyjaszewski K.
    Langmuir; 2008 Jun 01; 24(13):6785-95. PubMed ID: 18517227
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 14.