These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


679 related items for PubMed ID: 26745742

  • 1.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 2. CeO2 nanorods supported M-Co bimetallic oxides (M = Fe, Ni, Cu) for catalytic CO and C3H8 oxidation.
    Liu Z, Li J, Wang R.
    J Colloid Interface Sci; 2020 Feb 15; 560():91-102. PubMed ID: 31654899
    [Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6. Different metal (Mn, Fe, Co, Ni, and Zr) decorated Cu/CeO2 catalysts for efficient CO oxidation in a rich CO2/H2 atmosphere.
    Xing Y, Wu J, Liu D, Zhang C, Han J, Wang H, Li Y, Hou X, Zhang L, Gao Z.
    Phys Chem Chem Phys; 2024 Apr 17; 26(15):11618-11630. PubMed ID: 38546226
    [Abstract] [Full Text] [Related]

  • 7. Facile and Mild Strategy to Construct Mesoporous CeO2-CuO Nanorods with Enhanced Catalytic Activity toward CO Oxidation.
    Chen G, Xu Q, Yang Y, Li C, Huang T, Sun G, Zhang S, Ma D, Li X.
    ACS Appl Mater Interfaces; 2015 Oct 28; 7(42):23538-44. PubMed ID: 26455260
    [Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14. Fabrication of MnOx-CeO2/cordierite catalysts doped with FeOx and CuO for preferable catalytic oxidation of chlorobenzene.
    Huang Q, Si H, Yu S, Wang J, Tao T, Yang B, Zhao Y, Chen M.
    Environ Technol; 2020 May 28; 41(13):1664-1676. PubMed ID: 30379618
    [Abstract] [Full Text] [Related]

  • 15. Interface-confined oxide nanostructures for catalytic oxidation reactions.
    Fu Q, Yang F, Bao X.
    Acc Chem Res; 2013 Aug 20; 46(8):1692-701. PubMed ID: 23458033
    [Abstract] [Full Text] [Related]

  • 16. Structure, bonding, and catalytic activity of monodisperse, transition-metal-substituted CeO2 nanoparticles.
    Elias JS, Risch M, Giordano L, Mansour AN, Shao-Horn Y.
    J Am Chem Soc; 2014 Dec 10; 136(49):17193-200. PubMed ID: 25406101
    [Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18. Reaction Sensitivity of Ceria Morphology Effect on Ni/CeO2 Catalysis in Propane Oxidation Reactions.
    Zhang X, You R, Li D, Cao T, Huang W.
    ACS Appl Mater Interfaces; 2017 Oct 18; 9(41):35897-35907. PubMed ID: 28945332
    [Abstract] [Full Text] [Related]

  • 19. Design Aspects of Doped CeO2 for Low-Temperature Catalytic CO Oxidation: Transient Kinetics and DFT Approach.
    Polychronopoulou K, AlKhoori AA, Efstathiou AM, Jaoude MA, Damaskinos CM, Baker MA, Almutawa A, Anjum DH, Vasiliades MA, Belabbes A, Vega LF, Zedan AF, Hinder SJ.
    ACS Appl Mater Interfaces; 2021 May 19; 13(19):22391-22415. PubMed ID: 33834768
    [Abstract] [Full Text] [Related]

  • 20. Wet oxidation of phenol over transition metal oxide catalysts supported on Ce0.65 Zr0.35 O2 prepared by continuous hydrothermal synthesis in supercritical water.
    Kim KH, Kim JR, Ihm SK.
    J Hazard Mater; 2009 Aug 15; 167(1-3):1158-62. PubMed ID: 19264401
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 34.