These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
330 related items for PubMed ID: 26745910
21. Comparison of helical and cine acquisitions for 4D-CT imaging with multislice CT. Pan T. Med Phys; 2005 Feb; 32(2):627-34. PubMed ID: 15789609 [Abstract] [Full Text] [Related]
22. Novel Super-Resolution Approach to Time-Resolved Volumetric 4-Dimensional Magnetic Resonance Imaging With High Spatiotemporal Resolution for Multi-Breathing Cycle Motion Assessment. Li G, Wei J, Kadbi M, Moody J, Sun A, Zhang S, Markova S, Zakian K, Hunt M, Deasy JO. Int J Radiat Oncol Biol Phys; 2017 Jun 01; 98(2):454-462. PubMed ID: 28463165 [Abstract] [Full Text] [Related]
23. A generative adversarial network (GAN)-based technique for synthesizing realistic respiratory motion in the extended cardiac-torso (XCAT) phantoms. Chang Y, Jiang Z, Segars WP, Zhang Z, Lafata K, Cai J, Yin FF, Ren L. Phys Med Biol; 2021 May 31; 66(11):. PubMed ID: 34061044 [Abstract] [Full Text] [Related]
24. Simultaneous motion monitoring and truth-in-delivery analysis imaging framework for MR-guided radiotherapy. Mickevicius NJ, Chen X, Boyd Z, Lee HJ, Ibbott GS, Paulson ES. Phys Med Biol; 2018 Nov 26; 63(23):235014. PubMed ID: 30474614 [Abstract] [Full Text] [Related]
27. Evaluation of potential internal target volume of liver tumors using cine-MRI. Akino Y, Oh RJ, Masai N, Shiomi H, Inoue T. Med Phys; 2014 Nov 26; 41(11):111704. PubMed ID: 25370618 [Abstract] [Full Text] [Related]
28. Predicting real-time 3D deformation field maps (DFM) based on volumetric cine MRI (VC-MRI) and artificial neural networks for on-board 4D target tracking: a feasibility study. Pham J, Harris W, Sun W, Yang Z, Yin FF, Ren L. Phys Med Biol; 2019 Aug 21; 64(16):165016. PubMed ID: 31344693 [Abstract] [Full Text] [Related]
29. Realistic 4D MRI abdominal phantom for the evaluation and comparison of acquisition and reconstruction techniques. Lo WC, Chen Y, Jiang Y, Hamilton J, Grimm R, Griswold M, Gulani V, Seiberlich N. Magn Reson Med; 2019 Mar 21; 81(3):1863-1875. PubMed ID: 30394573 [Abstract] [Full Text] [Related]
30. Reconstruction of multi-phase parametric maps in 4D-magnetic resonance fingerprinting (4D-MRF) by optimization of local T1 and T2 sensitivities. Wong YL, Li T, Liu C, Lee HV, Cheung LA, Hui ESK, Cao P, Cai J. Med Phys; 2024 Jul 21; 51(7):4721-4735. PubMed ID: 38386904 [Abstract] [Full Text] [Related]
31. Stable and efficient retrospective 4D-MRI using non-uniformly distributed quasi-random numbers. Breuer K, Meyer CB, Breuer FA, Richter A, Exner F, Weng AM, Ströhle S, Polat B, Jakob PM, Sauer OA, Flentje M, Weick S. Phys Med Biol; 2018 Mar 22; 63(7):075002. PubMed ID: 29494344 [Abstract] [Full Text] [Related]
32. A Spatiotemporal-Constrained Sorting Method for Motion-Robust 4D-MRI: A Feasibility Study. Wang C, Subashi E, Yin FF, Chang Z, Cai J. Int J Radiat Oncol Biol Phys; 2019 Mar 01; 103(3):758-766. PubMed ID: 30321690 [Abstract] [Full Text] [Related]
33. Impact of motion velocity on four-dimensional target volumes: a phantom study. Nakamura M, Narita Y, Sawada A, Matsugi K, Nakata M, Matsuo Y, Mizowaki T, Hiraoka M. Med Phys; 2009 May 01; 36(5):1610-7. PubMed ID: 19544777 [Abstract] [Full Text] [Related]
35. Characterizing spatiotemporal information loss in sparse-sampling-based dynamic MRI for monitoring respiration-induced tumor motion in radiotherapy. Arai TJ, Nofiele J, Madhuranthakam AJ, Yuan Q, Pedrosa I, Chopra R, Sawant A. Med Phys; 2016 Jun 01; 43(6):2807-2820. PubMed ID: 27277029 [Abstract] [Full Text] [Related]