These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


557 related items for PubMed ID: 26759178

  • 1.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 2. Comparative Root Transcriptomics Provide Insights into Drought Adaptation Strategies in Chickpea (Cicer arietinum L.).
    Bhaskarla V, Zinta G, Ford R, Jain M, Varshney RK, Mantri N.
    Int J Mol Sci; 2020 Mar 05; 21(5):. PubMed ID: 32150870
    [Abstract] [Full Text] [Related]

  • 3. Comparative transcriptome sequencing of tolerant rice introgression line and its parents in response to drought stress.
    Huang L, Zhang F, Zhang F, Wang W, Zhou Y, Fu B, Li Z.
    BMC Genomics; 2014 Nov 26; 15(1):1026. PubMed ID: 25428615
    [Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5. Identification of four functionally important microRNA families with contrasting differential expression profiles between drought-tolerant and susceptible rice leaf at vegetative stage.
    Cheah BH, Nadarajah K, Divate MD, Wickneswari R.
    BMC Genomics; 2015 Sep 15; 16(1):692. PubMed ID: 26369665
    [Abstract] [Full Text] [Related]

  • 6. Transcriptional profiling of chickpea genes differentially regulated in response to high-salinity, cold and drought.
    Mantri NL, Ford R, Coram TE, Pang EC.
    BMC Genomics; 2007 Sep 02; 8():303. PubMed ID: 17764573
    [Abstract] [Full Text] [Related]

  • 7. Gene co-expression analysis reveals transcriptome divergence between wild and cultivated chickpea under drought stress.
    Moenga SM, Gai Y, Carrasquilla-Garcia N, Perilla-Henao LM, Cook DR.
    Plant J; 2020 Dec 02; 104(5):1195-1214. PubMed ID: 32920943
    [Abstract] [Full Text] [Related]

  • 8. Comparative transcriptomic and physiological analyses of contrasting hybrid cultivars ND476 and ZX978 identify important differentially expressed genes and pathways regulating drought stress tolerance in maize.
    Liu G, Zenda T, Liu S, Wang X, Jin H, Dong A, Yang Y, Duan H.
    Genes Genomics; 2020 Aug 02; 42(8):937-955. PubMed ID: 32623576
    [Abstract] [Full Text] [Related]

  • 9. A comprehensive resource of drought- and salinity- responsive ESTs for gene discovery and marker development in chickpea (Cicer arietinum L.).
    Varshney RK, Hiremath PJ, Lekha P, Kashiwagi J, Balaji J, Deokar AA, Vadez V, Xiao Y, Srinivasan R, Gaur PM, Siddique KH, Town CD, Hoisington DA.
    BMC Genomics; 2009 Nov 15; 10():523. PubMed ID: 19912666
    [Abstract] [Full Text] [Related]

  • 10. The salt-responsive transcriptome of chickpea roots and nodules via deepSuperSAGE.
    Molina C, Zaman-Allah M, Khan F, Fatnassi N, Horres R, Rotter B, Steinhauer D, Amenc L, Drevon JJ, Winter P, Kahl G.
    BMC Plant Biol; 2011 Feb 14; 11():31. PubMed ID: 21320317
    [Abstract] [Full Text] [Related]

  • 11. Comparative Analysis of the Brassica napus Root and Leaf Transcript Profiling in Response to Drought Stress.
    Liu C, Zhang X, Zhang K, An H, Hu K, Wen J, Shen J, Ma C, Yi B, Tu J, Fu T.
    Int J Mol Sci; 2015 Aug 11; 16(8):18752-77. PubMed ID: 26270661
    [Abstract] [Full Text] [Related]

  • 12. Genomic and expression analysis indicate the involvement of phospholipase C family in abiotic stress signaling in chickpea (Cicer arietinum).
    Sagar S, Biswas DK, Singh A.
    Gene; 2020 Aug 30; 753():144797. PubMed ID: 32454180
    [Abstract] [Full Text] [Related]

  • 13. Characterization of ASR gene and its role in drought tolerance in chickpea (Cicer arietinum L.).
    Sachdeva S, Bharadwaj C, Singh RK, Jain PK, Patil BS, Roorkiwal M, Varshney R.
    PLoS One; 2020 Aug 30; 15(7):e0234550. PubMed ID: 32663226
    [Abstract] [Full Text] [Related]

  • 14. RNA sequencing of leaf tissues from two contrasting chickpea genotypes reveals mechanisms for drought tolerance.
    Badhan S, Kole P, Ball A, Mantri N.
    Plant Physiol Biochem; 2018 Aug 30; 129():295-304. PubMed ID: 29913357
    [Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18. Transcriptome analysis in different rice cultivars provides novel insights into desiccation and salinity stress responses.
    Shankar R, Bhattacharjee A, Jain M.
    Sci Rep; 2016 Mar 31; 6():23719. PubMed ID: 27029818
    [Abstract] [Full Text] [Related]

  • 19. Selection and screening of drought tolerant high yielding chickpea genotypes based on physio-biochemical indices and multi-environmental yield trials.
    Shah TM, Imran M, Atta BM, Ashraf MY, Hameed A, Waqar I, Shafiq M, Hussain K, Naveed M, Aslam M, Maqbool MA.
    BMC Plant Biol; 2020 Apr 17; 20(1):171. PubMed ID: 32303179
    [Abstract] [Full Text] [Related]

  • 20. Transcriptome profiling and validation of gene based single nucleotide polymorphisms (SNPs) in sorghum genotypes with contrasting responses to cold stress.
    Chopra R, Burow G, Hayes C, Emendack Y, Xin Z, Burke J.
    BMC Genomics; 2015 Dec 09; 16():1040. PubMed ID: 26645959
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 28.